16-bit Proprietary Microcontroller

CMOS

F²MC-16L MB90660A Series

MB90662A/663A/P663A

■ DESCRIPTION

MB90660A series microcontrollers are 16-bit microcontrollers optimized for high speed realtime processing of consumer equipment and system control of air conditioner video cameras, VCRs, and copiers. Based on the F²MC*-16 CPU core, an F²MC-16L is used as the CPU. This CPU includes high-level language-support instructions and robust task switching instructions, and additional addressing modes.

Microcontrollers in this series have built-in peripheral resources including multi-function timers, 16-bit reload timer four channels, 8-bit PWM one channel, UART one channel, 10-bit A/D eight converter channels, and external interrupt eight channels.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- F²MC-16L CPU
- Minimum execution time: 62.5 ns/4 MHz oscillation (uses PLL multiplier): fastest speed at quadruple operation
- Instruction set optimized for controller applications

Upward compatibility at object level with the F²MC-16(H)

Various data types (bit, byte, word, long-word)

Higher speed due to review of instruction cycle

Expanded addressing modes: 23 types

High coding efficiency

Two access methods (bank system or linear pointer)

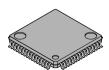
Improved multiply-and-divide instructions (additional signed instructions)

Improved high-precision operation with 32-bit accumulator

Extended intelligent I/O services (access area extended by 64 Kbytes)

Large memory space: 16 Mbytes

(Continued)


■ PACKAGE

64-pin Plastic SH-DIP

(DIP-64P-M01)

64-pin Plastic LQFP

(FPT-64P-M09)

(Continued)

• Improved instruction set applicable to high-level language (C) and multitasking

System stack pointer

Improved indirect instructions using various pointers

Barrel shift instruction

Stack check function

- Improved execution speed: 4-byte instruction queue
- Improved interrupt functions
- · Automatic data transfer function independent of CPU

Peripheral Resources

• ROM: 16 Kbytes (MB90661A)

32 Kbytes (MB90662A)

48 Kbytes (MB90663A)

One-time PROM: 48 Kbytes (MB90P663A)

• RAM: 512 bytes (MB90661A)

1.64 Kbytes (MB90662A)

2 Kbytes (MB90663A/MB90P663A)

• General-purpose ports: Max. 51

• UART: 1 channel

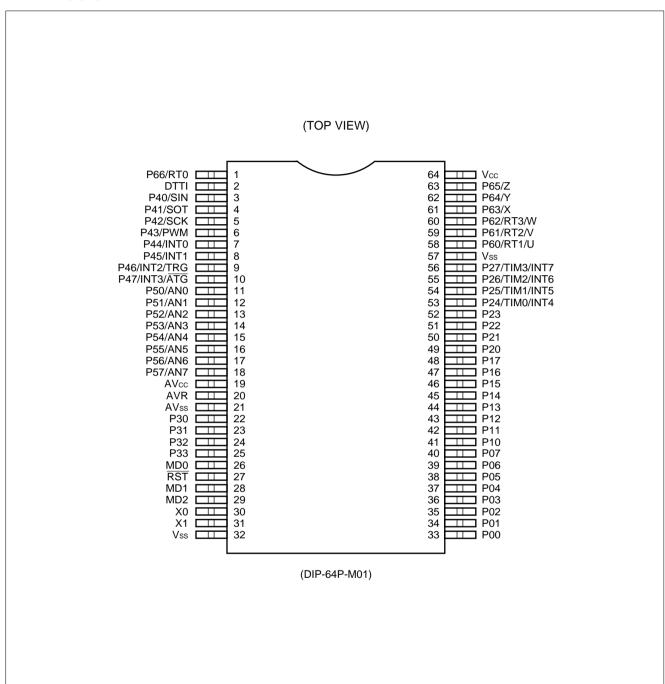
Can be used for both asynchronous transfer and clocked serial (I/O extended serial) communications

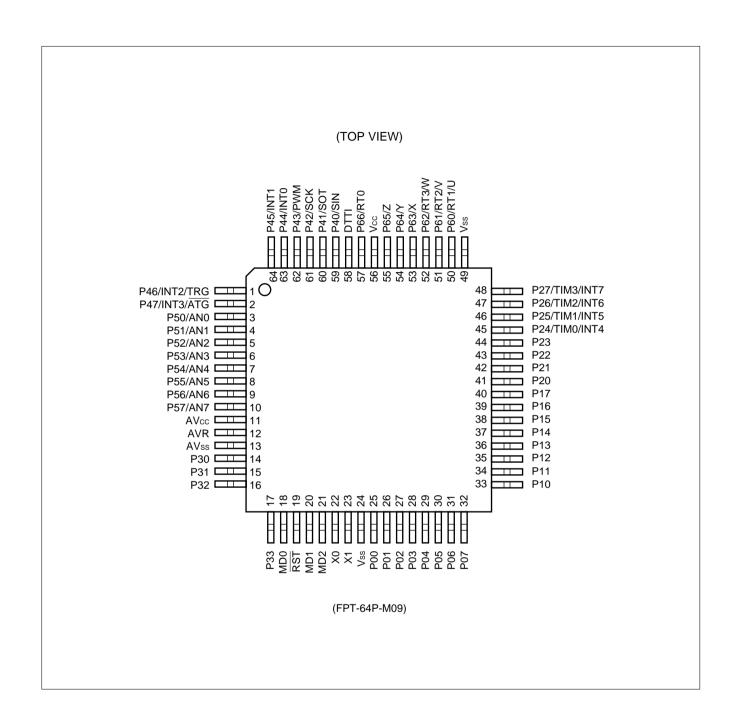
 A/D converter: 10-bit, 8 channels Includes 8-bit conversion mode

• 16-bit reload timer: 4 channels

• 8-bit PWM: 1 channel

• External interrupts: 8 channels


- 18-bit timebase timer with watchdog timer function
- PLL clock multiplier function
- CPU intermittent operation function
- · Various standby modes
- Package: SH-DIP-64/LQFP-64 (0.65-mm pitch)
- CMOS technology


To Top / Lineup / Index MB90660A Series

■ PRODUCT LINEUP

Part number Parameter	MB90P663A	MB90662A	MB90663A				
Classification	OTPROM	MASK ROM	MASK ROM				
ROM size	48 Kbytes	32 Kbytes	48 Kbytes				
RAM size	2 Kbytes	1.64 Kbytes	2 Kbytes				
CPU functions	Number of basic instructions Instruction bit length Instruction length Data bit length Minimum execution time Interrupt processing time	: 340 : 8/16 bits : 1 to 7 bytes : 1, 4, 8, 16, or 32 bits : 62.5 ns/4 MHz (PLL 4 mul : 1000 ns/16 MHz (minimun					
Ports	Input Ports I/O ports (CMOS) I/O ports (N channel open-dra Total	/O ports (CMOS) : 39 /O ports (N channel open-drain) : 8					
Packages	DIP-64P-M01 FPT-64P-M09	DIP-64P-M01 FPT-64P-M09	DIP-64P-M01 FPT-64P-M09				
Multi-Function Timer	register, zero detect terminal c	, buffered compare register × 4 control, 4 output channels, non-dead time timer, 4-bit carrier co	overlapped 3-phase waveform				
UART	Full duplex double buffer Selectable clock synchronous, Built-in dedicated baud rate go 19230, 9615, 4808, 2404, 120	Selectable clock synchronous/asynchronous operation Built-in dedicated baud rate generator (During asynchronous operation: 62500, 31250,					
A/D Converter	10-bit precision × 8 channels A/D conversion time Startup trigger Activiation	10-bit precision × 8 channels A/D conversion time : 6.13 μs (98 machine cycles at 16 MHz machine clock, includes sample hold time) Startup trigger : Startup by software, external source, or multi-function timer output (RT0) can be selected					
16-Bit Reload Timer		toggle output, one-shot output s from 0.125 μs, 0.5 μs, or 2.0 μs e					
8-Bit PWM		n (arbitrary cycle: duty ratio pul from 0.125 μs or 64.0 μs at 16					
External Interrupts	Number of inputs: 8 External interrupt mode (Intersources)	External interrupt mode (Interrupts can be generated by four types of request detect					
PLL Function	1/2/3/4-time multiplier can be operation frequency)	1/2/3/4-time multiplier can be selected (Please set so as not to exceed guaranteed operation frequency)					
Miscellaneous Items	V _{PP} is shared with MD2 terminal (when writing the EPROM)	_	_				

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin	no.		Circuit		
SH-DIP*1	LQFP*2	Pin name	type	Function	
30	22	X0	А	Crystal oscillator pin (32 MHz).	
31	23	X1	(Oscillator)		
33 to 40	25 to 32	P00 to P07	B (CMOS)	General-purpose I/O ports.	
41 to 48	33 to 40	P10 to P17	B (CMOS)	General-purpose I/O ports.	
49 to 52	41 to 44	P20 to P23	B (CMOS)	General-purpose I/O ports.	
53 to 56	45 to 48	P24 to P27	G (CMOS)	General-purpose I/O ports. This function is activated when the output specification of the reload timer is "disabled".	
		TIM0 to TIM3		I/O pins for reload timers 0 to 4. Input is used only as necessary while serving as input for the reload timer. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise. Their function as output terminals for the reload timer is activated when the output specification is "enabled".	
		INT4 to INT7		External interrupt request input pins. Input is used only as necessary while external interrupts are enabled. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise.	
22 to 25	14 to 17	P30 to P33	B (CMOS)	General-purpose I/O ports.	
3	59	P40	E (CMOS/H)	General-purpose I/O port. This function is always enabled.	
	SIN			UART serial data input pin. Input is used only as necessary while serving as UART input. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise.	
4	60	P41	E (CMOS/H)	General-purpose I/O port. This function is activated when the serial data output specification of the UART is "disabled".	
S		SOT		UART serial data output pin. This function is activated when the serial data output specification of the UART is "enabled".	

*1: DIP-64P-M01

*2: FPT-64P-M09

To Top / Lineup / Index MB90660A Series

Pin	no.	Dia	Circuit	Function			
SH-DIP*1	LQFP*2	Pin name	type				
5	61	P42	E (CMOS/H)	General-purpose I/O port. This function is activated when the clock output specification of the UART is "disabled".			
		SCK		UART clock I/O pin. This function is activated when the clock output specification of the UART is "enabled". Input is used only as necessary while serving as UART input. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise.			
6	62	P43	E (CMOS/H)	General-purpose I/O port. This function is activated when the output specification of the PWM is "disabled".			
		PWM		PWM timer output pin. This function is activated when the waveform output specification of the PWM timer is "enabled".			
7 63 8 64		P44 to P45	D (CMOS/H)	General-purpose I/O ports. This function is always active.			
		INT0 to INT1		External interrupt request input pins. Input is used only as necessary while external interrupts are enabled.			
9	1	P46	D (CMOS/H)	General-purpose input port. This function is always active.			
		INT2		External interrupt request input pin. Input is used only as necessary while external interrupts are enabled.			
		TRG		Timer clear trigger input pin for multi-function timer. Input is used only as necessary while multi-function timer input is enabled.			
10	2	P47	D (CMOS/H)	General-purpose input port. This function is always active.			
		INT3		External interrupt request input pin. Input is used only as necessary while external interrupts are enabled.			
		ĀTG		Trigger input pin for the A/D converter. Input is used only as necessary while the A/D converter is performing input.			
11 to 18	3 to 10	P50 to P57	C (AD)	Open-drain type I/O ports. This function is enabled when the analog input enable register specification is "port".			
		AN0 to AN7		Analog input pins for the A/D converter. This function is enabled when the analog input enable register specification is "AD".			

*1: DIP-64P-M01

*2: FPT-64P-M09

Pin	no.	D:	Circuit	Function			
SH-DIP*1 LQFP*2		Pin name	type	Function			
58 50		P60	E (CMOS/H)	General-purpose I/O port. This function is enabled when the multi-function timer waveform output specification is "disabled" and the 3-phase waveform output specification is "disabled".			
		RT1		Multi-function timer waveform output pin. This function is enabled when the multi-function timer output specification is "enabled".			
		U		3-phase waveform output pin. This function is enabled when the 3-phase waveform output specification is "enabled".			
59	51	P61	E (CMOS/H)	General-purpose I/O port. This function is enabled when the multi-function timer waveform output specification is "disabled" and the 3-phase waveform output specification is "disabled".			
		RT2		Multi-function timer waveform output pin. This function is enabled when the multi-function timer output specification is "enabled".			
		V		3-phase waveform output pin. This function is enabled when the 3-phase waveform output specification is "enabled".			
60	52	P62	E (CMOS/H)	General-purpose I/O port. This function is enabled when the multi-function timer waveform output specification is "disabled" and the 3-phase waveform output specification is "disabled".			
		RT3		Multi-function timer waveform output pin. This function is enabled when the multi-function timer output specification is "enabled".			
		W		3-phase waveform output pin. This function is enabled when the 3-phase waveform output specification is "enabled".			
61	53	P63	E (CMOS/H)	General-purpose I/O port. This function is enabled when the 3-phase waveform output specification is "disabled".			
		X		3-phase waveform output pin. This function is enabled when the 3-phase waveform output specification is "enabled".			
62 54		P64	E (CMOS/H)	General-purpose I/O port. This function is enabled when the 3-phase waveform output specification is "disabled".			
		Υ		3-phase waveform output pin. This function is enabled when the 3-phase waveform output specification is "enabled".			

*1: DIP-64P-M01

*2: FPT-64P-M09

To Top / Lineup / Index MB90660A Series

(Continued)

Pin	no.	Pin name	Circuit	Funation
SH-DIP*1	LQFP*2	- Pin name	type	Function
63 55		P65	E (CMOS/H)	General-purpose I/O port. This function is enabled when the 3-phase waveform output specification is "disabled".
		Z		3-phase waveform output pin. This function is enabled when the 3-phase waveform output specification is "enabled".
1	57	P66	E (CMOS/H)	General-purpose I/O port. This function is enabled when the multi-function timer waveform output specification is "disabled".
		RT0		Multi-function timer waveform output pin. This function is enabled when the multi-function timer output specification is "enabled".
2	58	DTTI	D (CMOS/H)	3-phase waveform output disable input (DTTI) pin.
19	11	AVcc	Power supply	Power supply for analog circuits. Turn this power supply on/off by applying a voltage level greater than AVcc to Vcc.
20	12	AVR	Power supply	Reference power supply for analog circuits. Turn this pin on/off by applying a voltage level greater than AVR to AVcc.
21	13	AVss	Power supply	Ground level for analog circuits.
26 28 29	18 20 21	MD0 to MD2	F (CMOS/H)	Input pins for specifying operation mode. Use these pins by directly connecting to Vcc or Vss.
27	19	RST	D (CMOS/H)	External reset request input pin.
64	56	Vcc	Power supply	Power supply for digital circuits.
32 57	24 49	Vss	Power supply	Ground level for digital circuits.

*1: DIP-64P-M01 *2: FPT-64P-M09

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X1 X0 Clock input Standby control signal	 3 MHz to 32 MHz operation Oscillation feedback resistor: Approx. 1 MΩ
В	Digital output Digital output Digital input Standby control Signal	CMOS level input and output With standby control Pull-up option can be selected With standby control
С	Digital output A/D input Digital input A/D disable	N-channel open-drain output CMOS level hysteresis input With A/D control
D	Digital input	CMOS level hysteresis input Without standby control Pull-up option can be selected Without standby control

To Top / Lineup / Index MB90660A Series

Туре	Circuit	Remarks
Е	Digital output Digital output Digital output Digital input	CMOS level output CMOS level hysteresis input With standby control Pull-up option can be selected With standby control
F	Noise filter Digital input Typ. 40 ns	 CMOS level input (Mask ROM version uses CMOS hysteresis input) Without standby control Pull-up option can be selected for MD2 (*1) Pull-up option can be selected for MD1/0 (*2) Both without standby option The MB90P663A does not include a noise filter. It also does not have a P channel protect Tr (*3) for the MD2 pin or pull-down.
G	Digital output Digital output Digital input	CMOS level input and output Without standby control Pull-up option can be selected With standby control

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur with CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

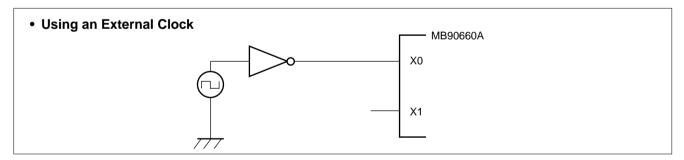
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

To prevent the similar aftereffects, use also the utmost care not to allow the analog supply voltage to exceed the digital supply voltage.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be pins should be connected to a pull-up or pull-down resistor.

3. External Reset Input


When resetting by inputting "L" level to the \overline{RST} pin, the "L" level must be input for at least 5 machine cycles to ensure that internal reset has occurred. Be aware of this point when using external clock input.

4. Vcc, Vss Pin

Be sure that both Vcc and Vss are at the same voltage.

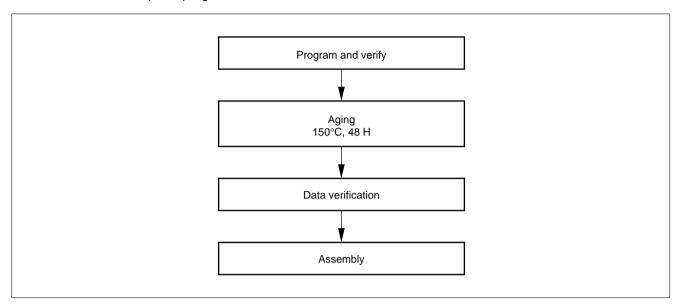
5. Notes on Using an External Clock

Drive X0 when using an external clock.

6. Order of Power-on to A/D Converter and Analog Inputs

Power-off (AVcc, AVR) to the digital power supply (Vcc) must be performed only after the A/D converter and the analog inputs (AN0 to AN7) has been turned on.

Turning on or off should always be performed keeping AVR below AVcc.


Use caution for the input voltage not to exceed AVcc when the pin sharing the analog input for its function is used as an input port.

7. Programming Mode

When the MB90P663A is shipped from Fujitsu, all bits ($48 \text{ K} \times 8 \text{ bits}$) are set to "1". Program by setting selected bits to "0" when you wish to set the data. Note that "1" cannot be programming electrically.

8. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

9. Programming Yields

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

10.Fluctuations in Supply Voltage

Although the assured $V_{\rm CC}$ supply voltage operating range is as specified, sudden fluctuations even within this range may cause a malfunction. Therefore, the voltage supply to the IC should be kept as constant as possible. The $V_{\rm CC}$ ripple (P-P value) at the supply frequency (50 to 60 Hz) should be less than 10% of the typical $V_{\rm CC}$ value, or the coefficient of excessive variation should not be more than 0.1 V/ms instantaneous change when power is supplied.

■ PROGRAMMING THE MB90P663A EPROM

Since the MB90P663A is functionally equivalent to the MBM27C1000 when it is in EPROM mode, it is possible to program them with a general-purpose EPROM programmer by using a special adaptor socket.

However, the MB90660A does not support the electronic signature (device ID code) mode.

1. Pin Assignment in EPROM Mode

• MBM27C1000-compatible pins

MBM2	7C1000	MB90P663A			MBM2	MBM27C1000			MB90P663A		
Din no	Din nama	Pin	no.	Din nomo	Pin no.	Pin name	Pin no.		D'		
Pin no.	Pin name	SH-DIP	LQFP	Pin name	Pin no.	Pin name	SH-DIP	LQFP	Pin name		
1	V _{PP}	29	21	MD2 (V _{PP})	32	Vcc	64	56	Vcc		
2	ŌĒ	24	16	P32	31	PGM	25	17	P33		
3	A15	48	40	P17	30	NC	_		_		
4	A12	45	37	P14	29	A14	47	39	P16		
5	A07	56	48	P27	28	A13	46	38	P15		
6	A06	55	47	P26	27	A08	41	33	P10		
7	A05	54	46	P25	26	A09	42	34	P11		
8	A04	53	45	P24	25	A11	44	36	P13		
9	A03	52	44	P23	24	A16	22	14	P30		
10	A02	51	43	P22	23	A10	43	35	P12		
11	A01	50	42	P21	22	CE	23	15	P31		
12	A00	49	41	P20	21	D07	40	32	P07		
13	D00	33	25	P00	20	D06	39	31	P06		
14	D01	34	26	P01	19	D05	38	30	P05		
15	D02	35	27	P02	18	D04	37	29	P04		
16	GND	_	_	_	17	D03	36	28	P03		

• Power supply, GND connection pins

Type	Pin	no.	Pin name
Туре	SH-DIP	LQFP	Pin name
Power	2	58	DTTI
	64	56	Vcc
GND	57	49	Vss
	21	13	AVss
	27	19	RST
	32	24	Vss
	26	18	MD0
	3	59	P40
	4	60	P41
	5	61	P42

• Pins other than MBM27C1000-compatible pins

Pin	no.	Pin name	Processing		
SH-DIP	LQFP	Fili Haille	Frocessing		
30 28	22 20	X0 MD1	Pull-up by 4.7 KΩ		
31	23	X1	OPEN		
9 10 11 to 18 19 20 58 to 63 1 6 to 8	1 2 3 to 10 11 12 50 to 55 57 62 to 64	P46 P47 P50 to P57 AVcc AVR P60 to P65 P66 P43 to P45	1 MΩ-level pull-up resistor connected to each pin		

2. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

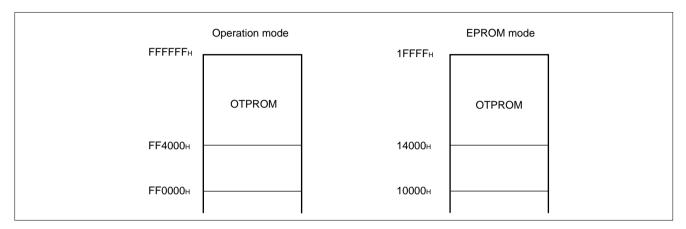
Part no.	Package	Compatible socket adapter	Recommended programmer manufacturer and programmer name				
	rackage	Sun Hayato Co., Ltd.	Minato Electronics Inc.	Data I/O Co., Ltd.	Advantest Corp.		
MB90P663AP	SH-DIP-64	ROM-64SD-32DP-16L	Recommended	Recommended	Recommended		
MB90P663APF	LQFP-64	ROM-64SF-32DP-16L	Recommended	Recommended	Recommended		

Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403 FAX (81)-3-5396-9106

Minato Electronics Inc.: TEL: USA (1)-916-348-6066

JAPAN (81)-45-591-5611

Data I/O Co., Ltd.: TEL: USA/ASIA (1)-206-881-6444


EUROPE (49)-8-985-8580

Advantest Corp.: TEL: Except JAPAN (81)-3-3930-4111

3. Programming Data

- (1) Adjust the EPROM programmer to settings for the MBM27C1000.
- (2) Load program data from addresses 10000_H to 1FFFF_H in the EPROM programmer.

OTPROM addresses FF4000_H to FFFFFF_H of the MB90P663A in operation mode correspond to addresses 14000_H to 1FFFF_H in EPROM mode.

- (3) Set the MB90P663A into the adaptor socket and install the adaptor socket into the EPROM programmer. Pay attention to the orientation of the device and the adaptor socket at this time.
- (4) Programming data to the EPROM.
- (5) If data cannot be programmed, try again with a 0.1 μF capacitor connected between Vcc and GND and VPP and GND.

Note: Since Mask ROM products (MB90662A/663A) do not include an EPROM mode, data cannot be read-out using an EPROM programmer.

4. PROM Option Bitmap

The programming method is the same as a PROM, and can be set by programming values to addresses indicated in the memory map.

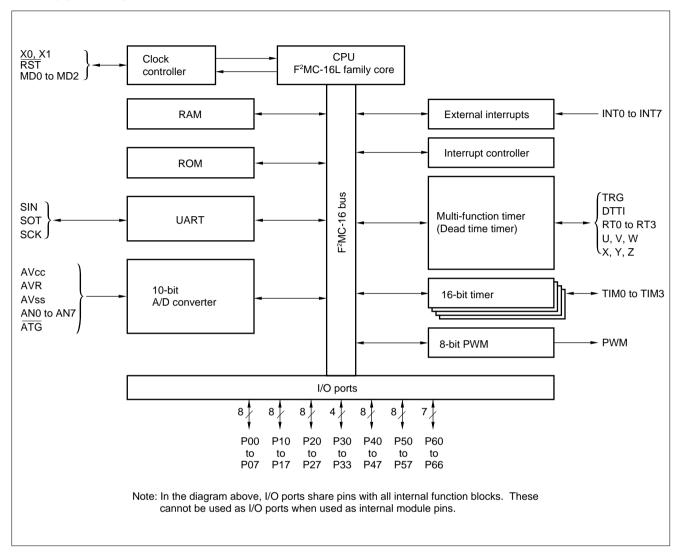
The following bit map shows the relation between bits and options.

PROM Option Bitmap

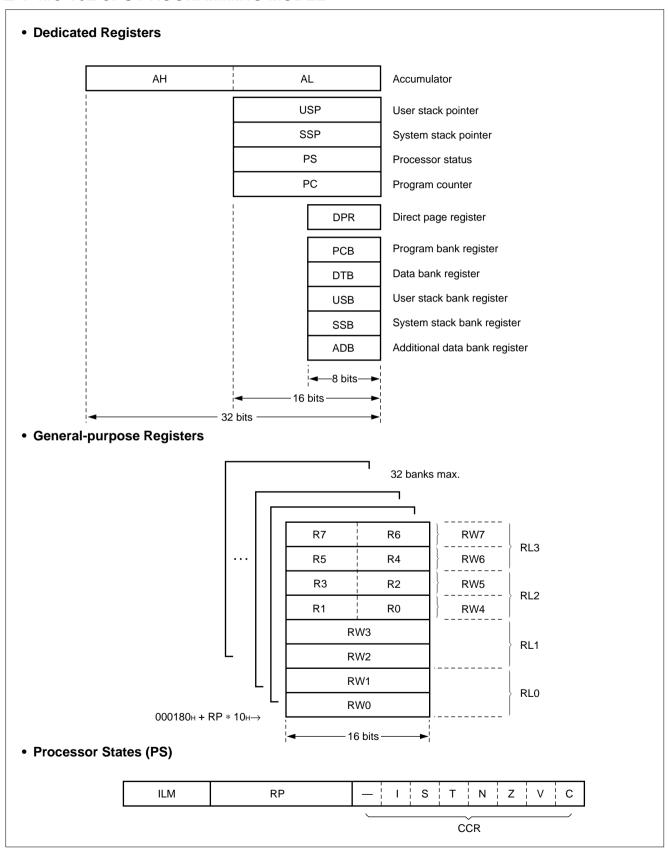
Address Bit	7	6	5	4	3	2	1	0
00004н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No					
	0: Yes	0: Yes	0: Yes					
00008н	P17	P16	P15	P14	P13	P12	P11	P10
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No					
	0: Yes	0: Yes	0: Yes					
0000Сн	P27	P26	P25	P24	P23	P22	P21	P20
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No					
	0: Yes	0: Yes	0: Yes					
00010н	P43	P42	P41	P40	P33	P32	P31	P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No					
	0: Yes	0: Yes	0: Yes					
00014н *1	P47 Pull-up 1: No 0: Yes	P46 Pull-up 1: No 0: Yes	P45 Pull-up 1: No 0: Yes	P44 Pull-up 1: No 0: Yes	RST Pull-up 1: No 0: Yes	DTTI Pull-up 1: No 0: Yes	Accept asynchronous reset 1: Yes 0: No	MD1/MD0°2 Pull-up 1: No 0: Yes
00018н	Open	P66 Pull-up 1: No 0: Yes	P65 Pull-up 1: No 0: Yes	P64 Pull-up 1: No 0: Yes	P63 Pull-up 1: No 0: Yes	P62 Pull-up 1: No 0: Yes	P61 Pull-up 1: No 0: Yes	P60 Pull-up 1: No 0: Yes

Initially (value when blank), all bits are "1".

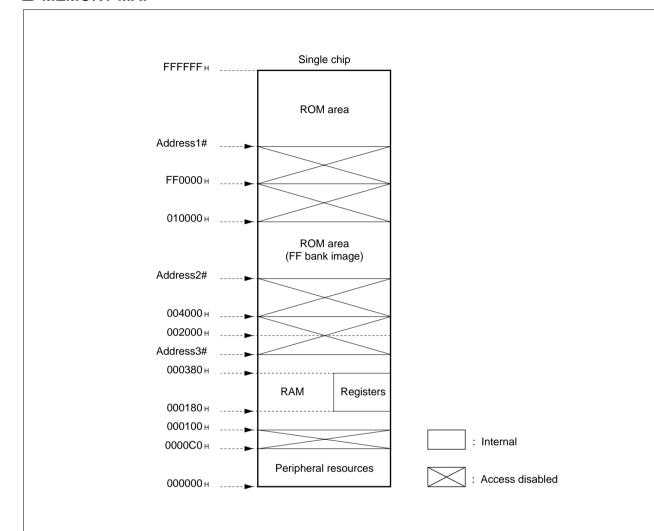
- *1: Under this release, the pull-up resistor is cut-off during stop mode for pins for which the pull-up option was selected. (Pins for which the circuit type shown in the "■ Pin Description" is B or E.)


 However, the pull-up resistor is not cut-off even in stop mode for P44 to 47, RST, DTTI (pins for which the circuit type shown in the "■ Pin Description" is D or G), and MD1 and MD0.
- *2: Whether or not a pull-up/pull-down resistor is present for MD2, MD1 and MD0 is determined as follows. If pull-up/pull-down resistor is selected, it is included with all 2 (or 3) pins. Presence or absence of the pull-up or pull-down resistors for the mode terminal cannot be selected for each pin.

Pin	MB90P663A	MB90663A/2A
MD2	No	Pull-down can be selected
MD1	With pull-up resistor	With pull-up resistor
MD0	With pull-up resistor	With pull-up resistor


Notes: • "FFH" must be set to addresses no defined in the table above.

Since the option setting for the MB90P663A takes 8 machine cycles, the option setting is not made until
a clock is provided after power-on. (This results in no pull-up for all pins, and asynchronous reset input is
accepted.)


■ BLOCK DIAGRAM

■ F²MC-16L CPU PROGRAMMING MODEL

■ MEMORY MAP

Product Model	Address #1	Address #2	Address #3
MB90662A	FF8000 _H	008000н	000780н
MB90663A	FF4000 _H	004000н	000900н
MB90P663A	FF4000 _H	004000н	000900н

To Top / Lineup / Index MB90660A Series

■ I/O MAP

Address	Register	Name	Access*2	Resource name	Initial value
000000н	Port 0 data register	PDR0	R/W*	Port 0	XXXXXXX
000001н	Port 1 data register	PDR1	R/W*	Port 1	XXXXXXX
000002н	Port 2 data register	PDR2	R/W*	Port 2	XXXXXXX
000003н	Port 3 data register	PDR3	R/W*	Port 3	XXXX
000004н	Port 4 data register	PDR4	R/W!	Port 4	XXXXXXX
000005н	Port 5 data register	PDR5	R/W*	Port 5	11111111
000006н	Port 6 data register/ Port data buffer register	PDR6/ PDBR	R/W*	Port 6	-xxxxxx
000007н to 0Fн	Vacancy	_	*1	_	_
000010н	Port 0 direction register	DDR0	R/W	Port 0	00000000
000011н	Port 1 direction register	DDR1	R/W	Port 1	0000000
000012н	Port 2 direction register	DDR2	R/W	Port 2	00000000
000013н	Port 3 direction register	DDR3	R/W	Port 3	0000
000014н	Port 4 direction register	DDR4	R/W	Port 4	0000
000015н	Analog input enable register	ADER	R/W	Port 5	11111111
000016н	Port 6 direction register	DDR6	R/W	Port 6	-0000000
000017н to 1Вн	Vacancy	_	*1	_	_
00001Сн to 1Fн	System reserved area	_	*1	_	_
000020н	PWM operation mode control register	PWMC	R/W		000001
000021н	Vacancy	_	*1	PWM	_
000022н	PWM reload register	PRLL	R/W		XXXXXXX
000023н	1 WWW reload register	PRLH	R/W		XXXXXXX
000024н	Serial mode register	SMR	R/W!		00000-00
000025н	Serial control register	SCR	R/W!		00000100
000026н	Serial input data register/ Serial output data register	SIDR/ SODR	R/W	UART	xxxxxxx
000027н	Serial status register	SSR	R/W!		00001-00
000028н	Interrupt enable register	ENIR	R/W	External interrupt	00000000
000029н	Interrupt source register	EIRR	R/W		XXXXXXX
00002Ан	Poguact lovel patting register	ELVR	R/W	External interrupt	00000000
00002Вн	Request level setting register	ELVK	FX/VV		00000000
00002Сн	A/D control atotus register	ADCS	R/W!	A/D converter	00000000
00002Dн	A/D control status register	7003	[N/ VV!	A/D converter	00000000

(Continued)

Address	Register Name Acce		Access*2	Resource name	Initial value
00002Ен	A/D data register	ADCD	DAM	A/D convertor	XXXXXXX
00002Fн	A/D data register	ADCR	R/W!	A/D converter	00000XX
000030н	Control atatus register	TMCCDO	DAM		00000000
000031н	Control status register	TMCSR0	R/W	16-bit	0000
000032н	16-bit timer register/	TMR0/	DAM	reload timer 0	XXXXXXX
000033н	16-bit reload register	TMRLR0	R/W		XXXXXXX
000034н	Control status assistes TMCCD4 DAM		00000000		
000035н	Control status register	TMCSR1	R/W	16-bit	0000
000036н	16-bit timer register/	TMR1/	DAM	reload timer 1	XXXXXXX
000037н	16-bit reload register	TMRLR1	R/W		XXXXXXX
000038н	Cantal status as sister	TMOCDO	DAM		0000000
000039н	Control status register	TMCSR2	R/W	16-bit	0000
00003Ан	16-bit timer register/	TMR2/	DAM	reload timer 2	XXXXXXX
00003Вн	16-bit reload register	TMRLR2	R/W		XXXXXXX
00003Сн	0	T1400D0	D 444		00000000
00003Dн	Control status register	TMCSR3	R/W	16-bit	0000
00003Ен	16-bit timer register/	TMR3/	5.44	reload timer 3	xxxxxxx
00003Fн	16-bit reload register	TMRLR3	R/W		XXXXXXX
000040н	Timer control status register	TCSR	R/W!		10000000
000041н	Compare interrupt control register	CICR	R/W		00000000
000042н	Timer mode control register	TMCR	R/W!		001-0000
000043н	Compare/data select register	COER	R/W		0000
000044н	Compare buffer mode control register	CMCR	R/W		0000
000045н	Zero detect output control register	ZOCTR	W		X0000
000046н	Output control buffer register	OCTBR	R/W	Multi-function	11111111
000047н	Zero detect interrupt control register	ZICR	R/W!	timer	0 X X X X
000048н	Output compare buffer register 0	OCDDDO	W		xxxxxxx
000049н	Output compare buffer register 0	OCPBR0	VV		XXXXXX
00004Ан	Output compare buffer register 4	OCDDD4	\^/		xxxxxxx
00004Вн	Output compare buffer register 1	OCPBR1	W		XXXXX
00004Сн	Output company by the resistant of	OCDDDC	\^/		xxxxxxx
00004Дн	Output compare buffer register 2	OCPBR2	W		XXXXXX

To Top / Lineup / Index MB90660A Series

(Continued)

Address	Register	Name	Access*2	Resource name	Initial value	
00004Ен	Output compare buffer register 2	OCDBD2	W		XXXXXXX	
00004Fн	Output compare buffer register 3	OCPBR3	VV		XXXXXX	
000050н	Common close buffer register	CLDDD	10/		00000000	
000051н	Compare clear buffer register	CLRBR	W	Multi-function timer	000000	
000052н	Dead time control register	DTCR	R/W!		00000000	
000053н	Dead time setting register	DTSR	W		XXX0XXXX	
000054н	Dead time compare register	DTCMR	W		XXXXXXXX	
000055н	Vacancy	_	*1	_	_	
000056н	Times nin central register	TDCD	DAM	16-bit reload	-001-000	
000057н	Timer pin control register	TPCR	R/W	timer	-011-010	
000058н to 5Ен	Vacancy	_	*1	_	_	
00005Fн	Machine clock division control register	CDCR	W	UART	1111	
000060н to 8Fн	Vacancy	_	*1	_	_	
000090н to 9Ен	System reserved area	_	*1	_	_	
00009Fн	Delayed interrupt source generate/cancel register	DIRR	R/W	Delayed interrupt generator module	0	
0000А0н	Low power mode control register	LPMCR	R/W!	I am manuar	00011000	
0000А1н	Clock select register	CKSCR	R/W!	Low power	11111100	
0000A2н to A7н	System reserved area	_	*1	_	_	
0000А8н	Watchdog timer control register	WDTC	R/W!	Watchdog timer	X-XXX111	
0000А9н	Timebase timer control register	TBTC	R/W!	Timebased timer	100100	
0000AAн to AFн	System reserved area	_	*1	_	_	
0000В0н	Interrupt control register 00	ICR00	R/W!		00000111	
0000В1н	Interrupt control register 01	ICR01	R/W!		00000111	
0000В2н	Interrupt control register 02	ICR02	R/W!		00000111	
0000ВЗн	Interrupt control register 03	ICR03	R/W!	Interrupt	00000111	
0000В4н	Interrupt control register 04	ICR04	R/W!	controller	00000111	
0000В5н	Interrupt control register 05	ICR05	R/W!		00000111	
0000В6н	Interrupt control register 06	ICR06	R/W!		00000111	
0000В7н	Interrupt control register 07	ICR07	R/W!		00000111	

(Continued)

Address	Register	Name	Access*2	Resource name	Initial value
0000В8н	Interrupt control register 08	ICR08	R/W!		00000111
0000В9н	Interrupt control register 09	ICR09	R/W!		00000111
0000ВАн	Interrupt control register 10	ICR10	R/W!		00000111
0000ВВн	Interrupt control register 11	ICR11	R/W!	Interrupt	00000111
0000ВСн	Interrupt control register 12	ICR12	R/W!	controller	00000111
0000ВDн	Interrupt control register 13	ICR13	R/W!		00000111
0000ВЕн	Interrupt control register 14	ICR14	R/W!		00000111
0000ВFн	Interrupt control register 15	ICR15	R/W!		00000111
0000C0н to FFн	System reserved area	_	*1	_	_

- *1: Access prohibited
- *2: Registers marked "R/W!" in the access column include some bits that can only be read or only be written. For details, see the register list for each resource.
- *: When a register marked "R/W!", "R/W*" or "W" in the access column is accessed by a read-modify-write instruction (such as a bit set instruction), the bit operated on by the instruction will be set to the specified value, but a malfunction will occur if there are any other bits which can only be written. Therefore, do not access these locations using these instructions.

Description of Initial Values

- 0: The initial value of this bit is "0".
- 1: The initial value of this bit is "1".
- *: The initial value of this bit is "1" or "0". (This is determined depending on the level of the MD0 to MD2 pins.)
- X: The initial value of this bit is undefined.
- -: This bit is not used. The initial value is undefined.

Note: The initial value results for bits which can only be written when initialized by a reset. Note that this is not the value when read.

Also, sometimes LPMCR, CKSCR and WDTC are initialized and sometimes they are not depending on the type of reset. If they are initialized, the initial value is used.

■ INTERRUPT SOURCES, INTERRUPT VECTORS AND INTERRUPT CONTROL REGISTERS

Intermed accord	I ² OS	I	nterrupt	vector	Interrupt control register		
Interrupt source	support	Nur	nber	Address	ICR	Address	
Reset	×	#08	08н	FFFFDCH	_	_	
INT9 instruction	×	#09	09н	FFFFD8 _H	_	_	
Exception	×	#10	ОАн	FFFFD4 _H	_	_	
Multi-function timer DTTI input	×	#12	0Сн	FFFFCCH	ICR00	0000В0н	
External interrupt #0	0	#13	0Дн	FFFFC8 _H	ICR01	0000В1н	
External interrupt #4	0	#14	0Ен	FFFFC4 _H	- ICRUI	0000BTH	
Multi-function timer trigger input or zero detect	0	#15	0Гн	FFFFC0 _H	ICR02	0000В2н	
Multi-function timer zero detect	0	#17	11н	FFFFB8 _H	ICR03	0000ВЗн	
Multi-function timer overflow, compare clear or zero detect	0	#19	13н	FFFFB0 _H	ICR04	0000В4н	
External interrupt #1	0	#21	15н	FFFFA8 _H	ICR05	0000В5н	
Multi-function timer compare match	×	#22	16н	FFFFA4 _H		000000011	
External interrupt #5	0	#23	17н	FFFFA0 _H	ICR06	0000В6н	
PWM underflow	×	#24	18н	FFFF9C _H			
External interrupt #2	0	#25	19н	FFFF98 _H	ICR07	0000В7н	
External interrupt #6	0	#26	1Ан	FFFF94 _H	- ICKUI	0000B7H	
16-bit reload timer #0	0	#27	1Вн	FFFF90 _H	ICR08	0000В8н	
16-bit reload timer #1	0	#28	1Сн	FFFF8C _H	ICKUO	ООООБОН	
16-bit reload timer #2	0	#29	1Dн	FFFF88 _H	ICR09	0000В9н	
16-bit reload timer #3	0	#30	1Ен	FFFF84 _H		0000D9H	
End of A/D converter conversion	0	#31	1F _H	FFFF80 _H	ICR10	0000ВАн	
Timebase timer interval interrupt	×	#34	22н	FFFF74 _H	ICR11	0000ВВн	
UART send complete	0	#35	23н	FFFF70 _H	ICR12	0000ВСн	
UART receive complete	0	#37	25н	FFFF68 _H	ICR13	0000ВДн	
External interrupt #3	0	#39	27н	FFFF60 _H	ICR14	0000ВЕн	
External interrupt #7	0	#40	28н	FFFF5C _H	10814	UUUUDEH	
Delayed interrupt generator module	×	#42	2Ан	FFFF54 _H	ICR15	0000ВFн	

[:] indicates that the interrupt request flag is cleared by the I2OS interrupt clear signal (no stop request).

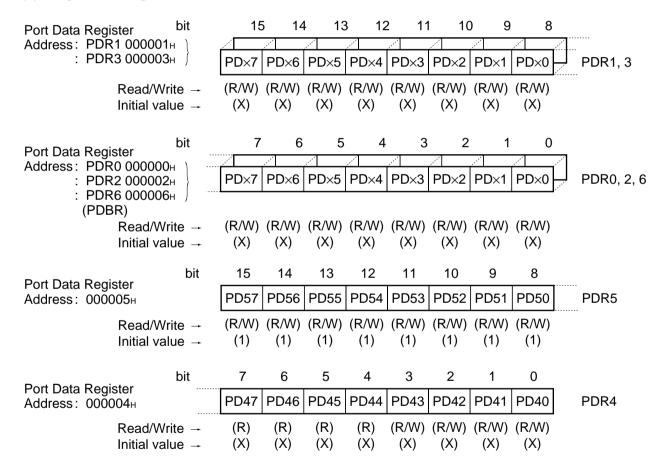
Note: Do not specify I²OS activation in interrupt control registers that do not support I²OS.

②: indicates that the interrupt request flag is cleared by the I2OS interrupt clear signal (with stop request).

 $[\]times$: indicates that the interrupt request flag is not cleared by the I²OS interrupt clear signal.

■ PERIPHERAL RESOURCES

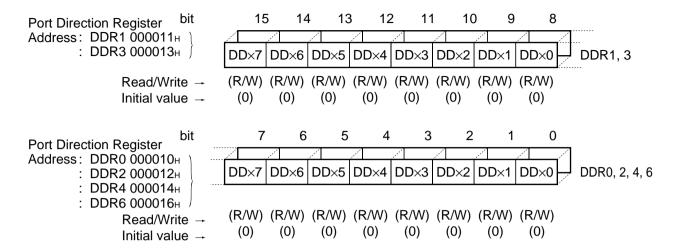
1. Parallel Port


The MB90660A includes 39 I/O pins, 4 input pins, and 8 open-drain output pins.

Port 0, 1, 2, 3 and 6 are I/O ports. They are used for input when the corresponding direction register value is "0", and for output when the value is "1".

Port 5 is an open-drain port. It is used as a port when the analog input enable register is "0".

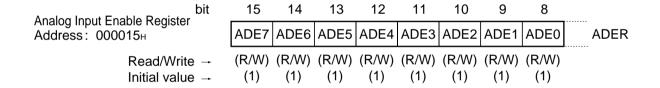
Ports 40 to 43 are I/O ports. They are used for input when the corresponding direction register value is "0", and for output when the value is "1". Ports 44 to 47 are input ports which can only be used for reading data.


(1) Register Configuration

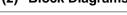
Notes: There are no register bits for bits 15 to 12 of Port 3.

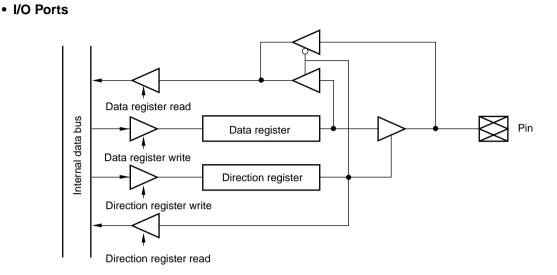
There is no register bit for bit 7 of Port 6.

Bits 7 to 4 of Port 4 can only be used to read data.

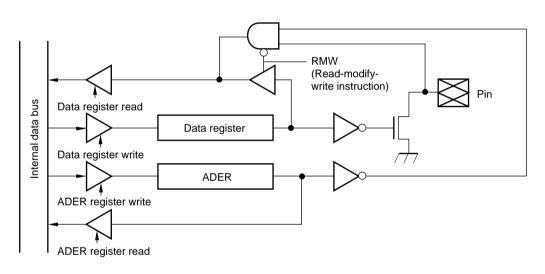


Notes: There are no register bits for bits 15 to 12 of Port 3.

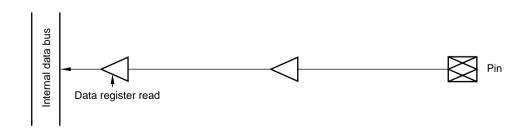

There are not register bits for bits 7 to 4 of Port 4


There is no DDR for Port 5.

There is no register bit for bit 7 of Port 6.



(2) Block Diagrams



• Open-drain Ports (Also Used for Analog Input)

• Input Ports

2. Multi-function Timer

The multi-function timer controls up to 7 realtime output pins, and includes the following functions.

Interval timer function

It can output pulses or generate an interrupt at a fixed interval.

· PWM output function

Can perform output for a fixed cycle pulse while changing the duty ratio (ratio between "L" output width and "H" output width) in realtime.

3-phase AC sine wave output (inverter control output) function
 Can perform 3-phase AC sine wave output using AC motor inverter control, etc. (using any setting for the non-overlap interval)

This timer also has the following characteristics.

• Pulse cycle control using 14-bit timer

A machine cycle of 1, 2, 8 or 16 can be selected based on pre-scalars as the clock source (Minimum resolution of 62.5 ns at 16 MHz operation).

Can use a carrier frequency up to 30 KHz at 8-bit stop when used for AC motor control.

Up count only or up/down count can be selected using the count mode selection.

Possessing a buffer, cycle can be changed in realtime by transferring data from buffer upon zero detect.

· Duty control using compare registers

Possessing four compare registers, output pulse duty can be set for four separate channels.

Each possessing a separate buffer, duty can be changed in realtime by transferring data from buffer upon zero detect or comparison.

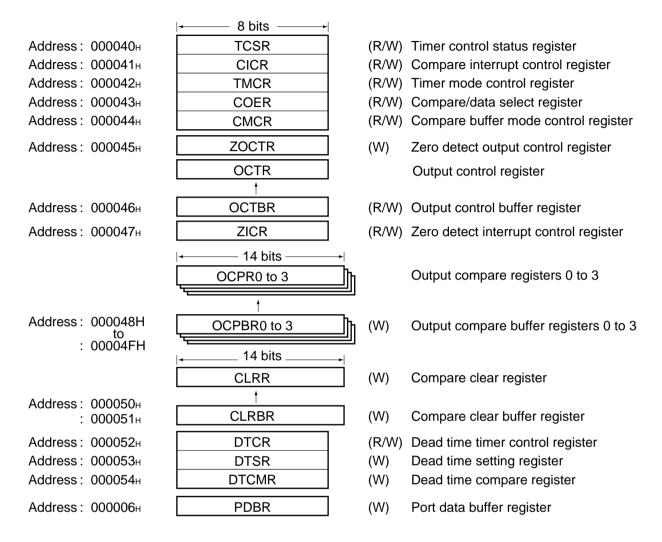
· Non-overlap control using dead time timer

Dead time timer can be used to generate PWM output for three channels or even reversed signals with non-overlap, thus allowing an AC motor control wave (U, V, W, X, Y, Z) to be generated.

A machine cycle of 1, 4, 8 or 32 can be selected based on pre-scalars as the clock source for the dead timer (Minimum resolution of 62.5 ns at 16 MHz operation)

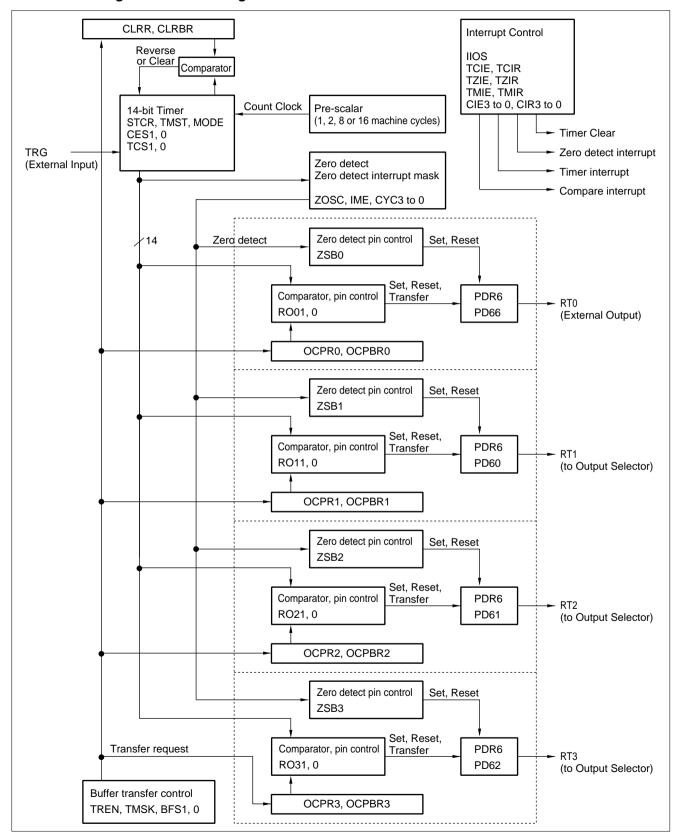
Forced stop control using DTTI pin input

The forced pin output level can be fixed by DTTI pin input or software.

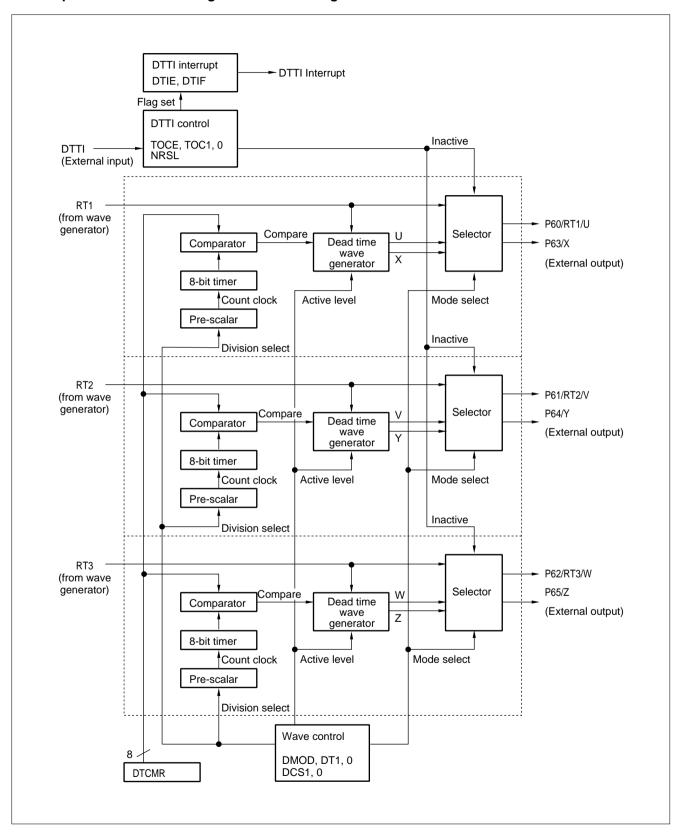

Inactive control can be performed during AC motor control using DTTI pin input.

External pin control even during vibration stop can be performed through clockless DTTI pin input.

Event detection and interrupt generation using various flags


Flags can be set and/or interrupts generated upon zero detect, overflow, detect of match with compare registers, or clear by TRG pin input, or any match of the compare registers for the four channels for the 14-bit timer (also possible to disable interrupt output).

(1) Register Configuration



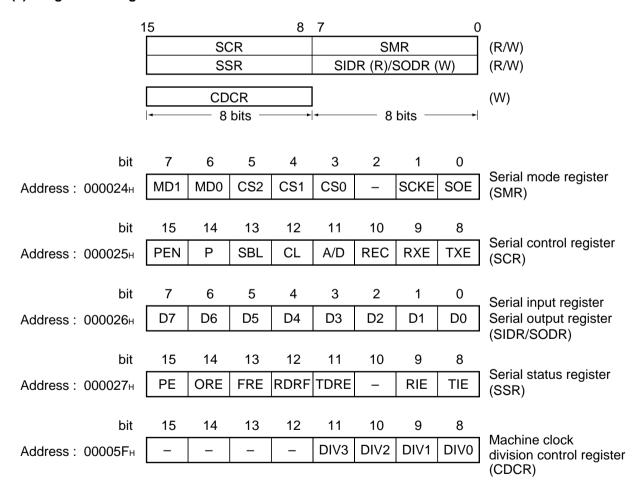
(2) Block Diagrams

• Timer/wave generator block diagram

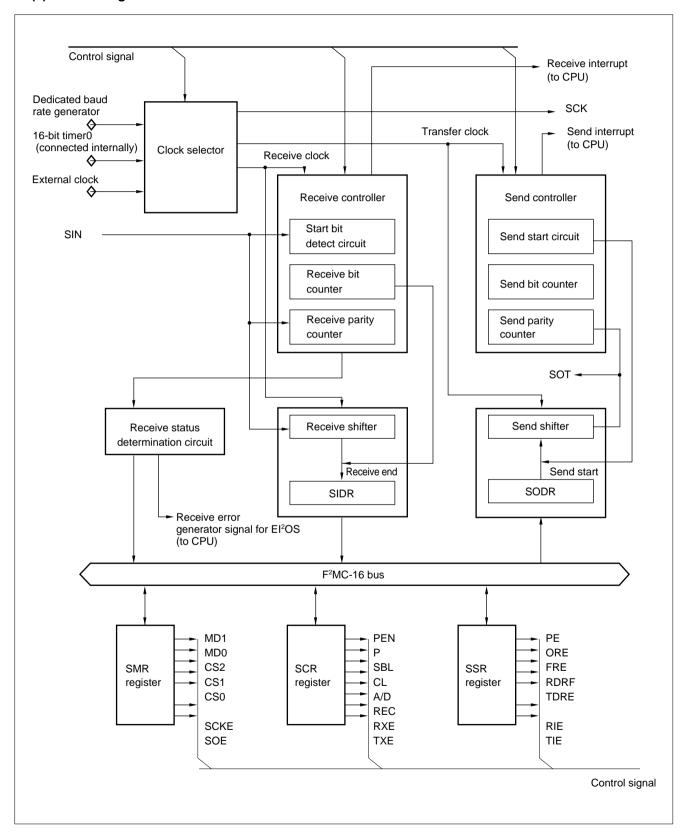
• Output selector/dead time generator block diagram

3. UART

The UART is a serial I/O port for asynchronous (start/stop) or CLK synchronous communications with external resources. It has the following characteristics:


- Full duplex double buffering
- Asynchronous (start/stop) or CLK synchronous communications
- Multiprocessor mode support
- Internal dedicated baud-rate generator

Asynchronous : 19230/9615/31250/4808/2404/1202 bps


CLK synchronous : 2 M/1 M/500 K/250 K bps

- · Free baud-rate setting based on external clock
- Error detection functions (parity, framing and overrun)
- Use of NRZ coded transfer signal
- Supports intelligent I/O services

(1) Register Configuration

(2) Block Diagram

4. 10-bit, 8-channel A/D Converter (with 8-bit Resolution Mode)

This 10-bit, 8-channel A/D converter is used to convert analog input voltage to corresponding digital values. It has the following features.

- \bullet Conversion time: 6.13 μs per channel (includes sample and hold time at 98 machine cycles/machine clock of 16 MHz)
- Sample hold time: 3.75 μs per channel (60 machine cycles per machine clock of 16 MHz)
- RC-type sequential approximation conversion with sample and hold circuits
- 10-bit or 8-bit resolution
- Analog input can be selected from 8 channels

Single conversion mode : One channel selected for conversion

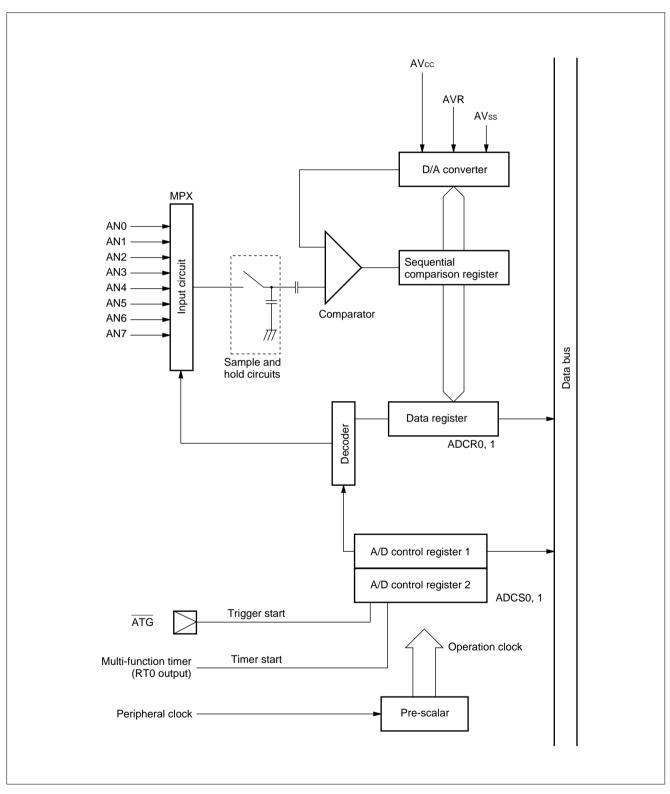
Scan conversion mode : Consecutive multiple channels converted (programmable with max. eight

channels)

Repetitive conversion mode: Data on the specified channel is converted repeatedly

Stop conversion mode : Once one channel is converted, operations stop and the device waits until

started again (conversion start can be synchronized)


At the end of each A/D conversion, an interrupt request to the CPU can be generated. This interrupt can be
used to activate I²OS or transfer A/D conversion results to memory, making it useful when continuous
processing is desired.

Conversion can be triggered by software, an external trigger (falling edge), and/or a timer (rising edge).

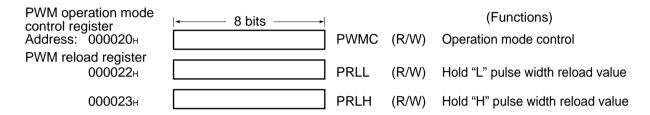
(1) Register Configuration

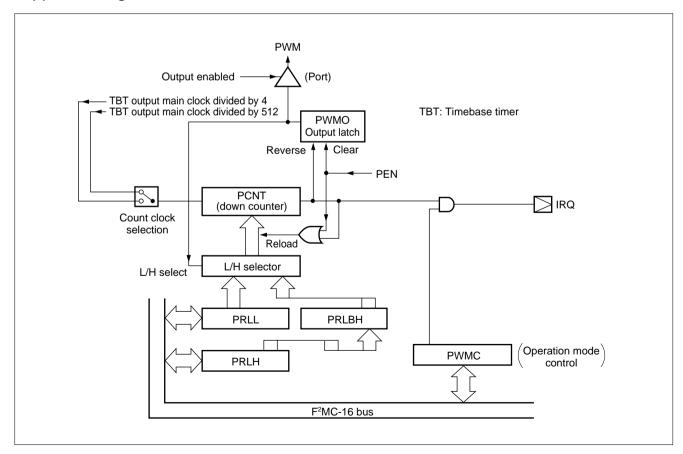
A/DControl status reg	bit	15	14	13	12	11	10	9	8	
Address: 00002DH		BUSY	INT	INTE	PAUS	STS1	STS0	STRT	Reserved	ADCS
	ead/Write → nitial value →	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(W) (0)	(-)	
A/D Control status re	bit	7	6	5	4	3	2	1	0	
Address: 00002C		MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0	ADCS
	tead/Write → nitial value →	(R/W) (0)								
A/D Data register (bit	15	14	13	12	11	10	9	8	
A/D Data register (Address: 00002F		S10	_	_	_	_	_	D9	D8	ADCR
	tead/Write → nitial value →	(R/W) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (X)	(R) (X)	
A/D Data register (bit	7	6	5	4	3	2	1	0	
Address: 00002E		D7	D6	D5	D4	D3	D2	D1	D0	ADCR
	tead/Write →	(R) (X)								

(2) Block Diagram

5. PWM Timer

This block, which is an 8-bit reload timer module, outputs the pulse width modulation (PWM) using pulse output control corresponding to the timer operation.

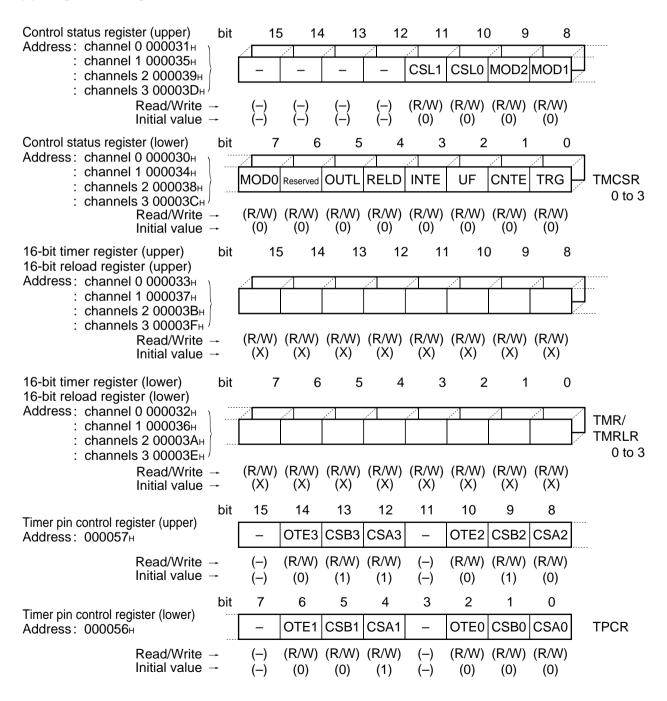

In terms of hardware, this block possesses an 8-bit down counter, two 8-bit reload registers for setting "L" width and "H" width, a control register, external pulse output pin, and interrupt output circuit to achieve the following functions.

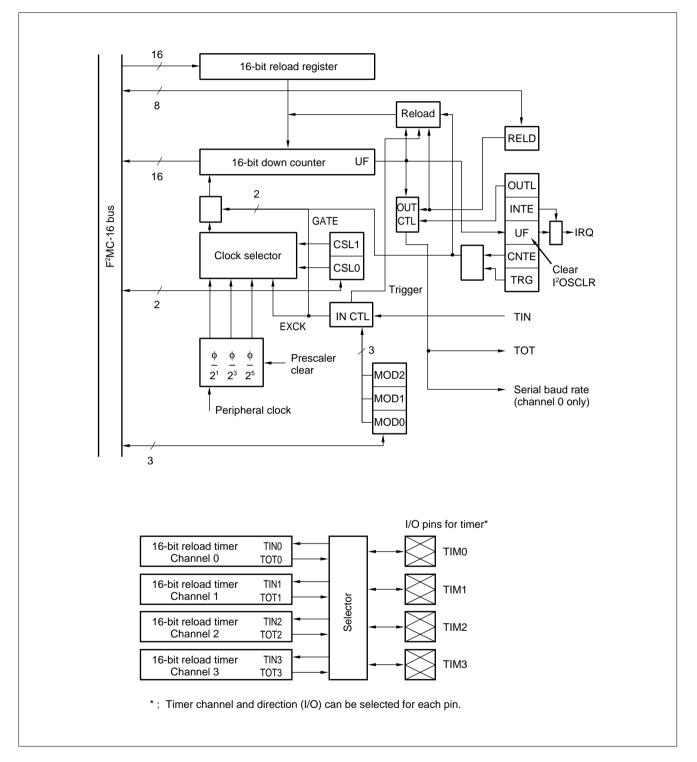

• PWM output operation : Pulse waves of any period and duty factor are output.

This block can also be used as a D/A converter with an external circuit.

Interrupt requests can be output based on counter underflow.

(1) Register Configuration

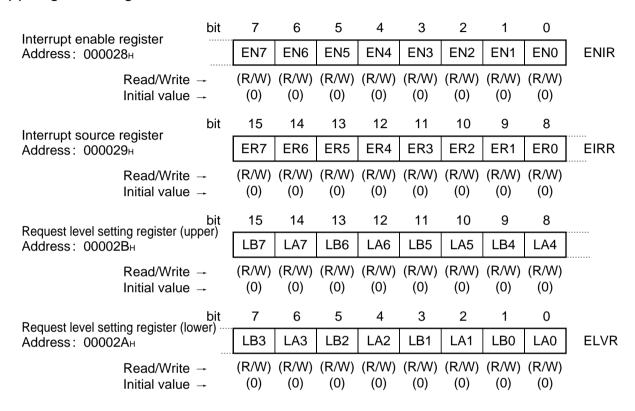


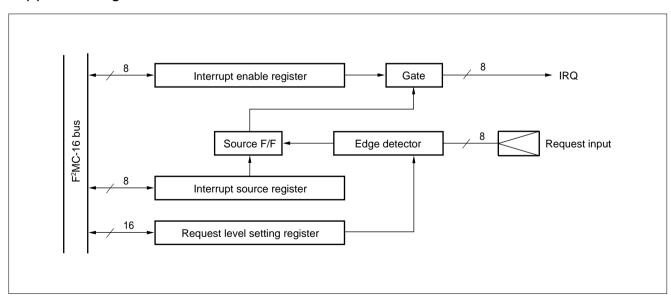

6. 16-bit Reload Timer (with Event Count Function)

The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload register, control register, and 4 timer pins (I/O set by timer pin select register). Three internal clocks and an external clock can be selected as input clocks. A toggle output waveform is output at the output pin (TOT) in reload mode, while a square wave indicating that the timer is counting is output at the output pin in single-shot mode. The input pin (TIN) can be used for event input in even count mode, and for trigger input or gate input in internal clock mode.

This product has this timer built into four channels.

(1) Register Configuration

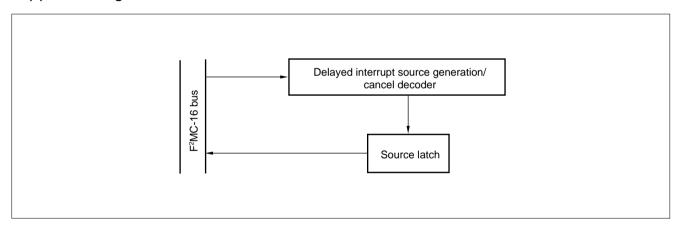




7. External Interrupts

In addition to "H" and "L", rising and falling edge can be selected as the external interrupt level for a total of four interrupt level types.

(1) Register Configuration

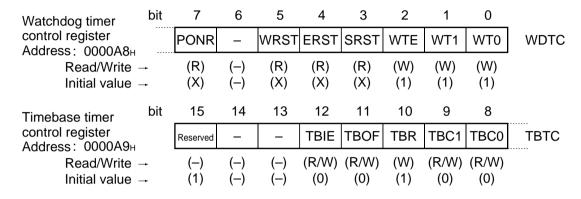

8. Delayed Interrupt Generation Module

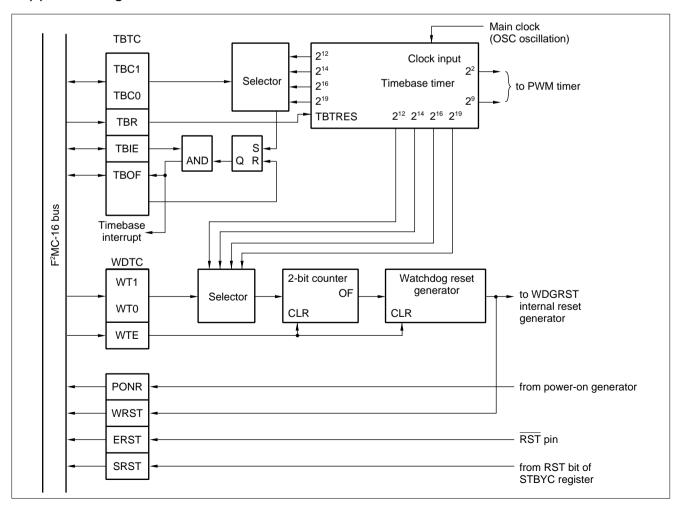
The delayed interrupt generation module is used to generate an interrupt for task switching. If this module is used, an interrupt request to the F²MC-16L CPU can be generated or cancelled by software.

(1) Register Configuration

Delayed interrupt request	bit	15	14	13	12	11	10	9	8	
generation/cancel register Address: 000009 _H		_	_	_	_	_	_	_	R0	DIRR
Read/Write Initial value		(-) (-)	(–) (–)	(-) (-)	(–) (–)	(-) (-)	(-) (-)	(-) (-)	(R/W) (0)	

The DIRR register controls the generation and cancellation of delayed interrupt requests. A delayed interrupt request is generated when "1" is written to this register, while a delayed interrupt request is cancelled when "0" is written here. Request cancel status results upon reset. Although either "0" or "1" may be written into reserved bits, we recommend using the set bit and clear bit instructions when accessing this register in consideration of possible future extensions.




9. Watchdog Timer and Timebase Timer Functions

The watchdog timer consists of a 2-bit watchdog counter using carry signals from the 18-bit timebase timer as the clock source, a control register, and a watchdog reset controller.

In addition to an 18-bit timer, the timebase timer consists of a circuit for controlling interval interrupts. Note that the timebase timer uses the main clock regardless of the status of the MCS bit within the CKSCR register.

(1) Register Configuration

10. Low Power Consumption Controller (CPU intermittent operation function, stable oscillation wait time, and clock multiplier function)

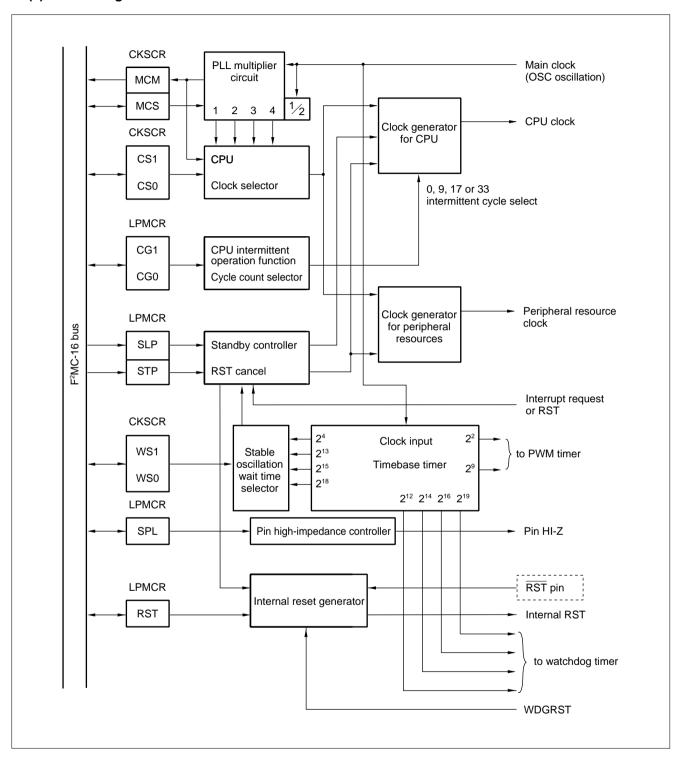
The following operation modes are available: PLL clock mode, PLL sleep mode, clock mode, main clock mode, main sleep mode and stop mode. Operation modes other than PLL clock mode are classified as low power consumption modes.

Main clock mode and main sleep mode are modes where the microcontroller operates using the main clock (OSC oscillation clock) only. In these modes, the main clock divided by two is used as the operation clock and the PLL clock (VCO oscillation clock) is stopped.

In PLL sleep mode and main sleep mode, only the operation clock of the CPU is stopped, while operations besides the CPU clock continue.

In clock mode, only the timebase timer is allowed to operate.

In stop mode, oscillation is stopped, allowing data to be held at the lowest power consumption possible.

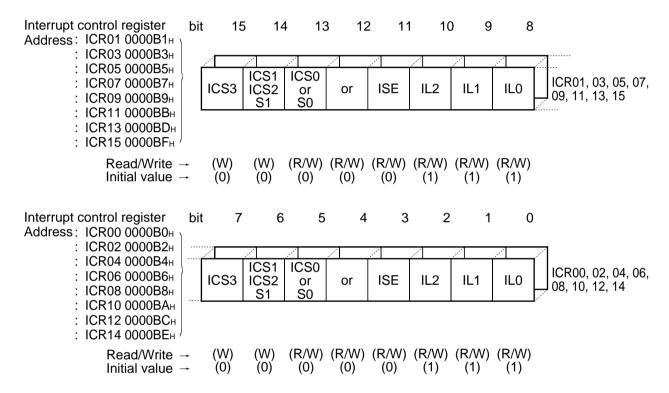

The CPU intermittent operation function causes the clock provided to the CPU to function intermittently when accessing registers, internal memory, internal resources and the external bus. This allows processing to be performed at lower power consumption by reducing the CPU execution speed while continuing to provide a high speed clock to internal resources.

The PLL clock multiplier can be selected as 1, 2, 3 or 4 using the CS1 and CS0 bits.

The stable oscillation wait time for the main clock when stop mode is cancelled can be set using the WS1 and WS0 bits.

(1) Register Configuration

Low power cons	sumption mode bit	7	6	5	4	3	2	1	0	
control register Address: 0000		STP	SLP	SPL	RST	Reserved	CG1	CG0	Reserved	LPMCR
	Read/Write → Initial value →	(W) (0)	(W) (0)	(R/W) (0)	(W) (1)	(-) (1)	(R/W) (0)	(R/W) (0)	(-) (0)	
Clock selection	bit	15	14	13	12	11	10	9	8	
Address: 0000	-	Reserved	МСМ	WS1	WS0	Reserved	MCS	CS1	CS0	CKSCR
	Read/Write → Initial value →	(-)	(R) (1)	(R/W) (1)	(R/W) (1)	(–) (1)	(R/W) (1)	(R/W) (0)	(R/W) (0)	



11. Interrupt Controller

The interrupt control register is located within the interrupt controller. Its status conforms to all I/O possessed by the interrupt function. This register includes the following three functions.

- Sets the interrupt level of the corresponding peripheral resource
- Selects whether to use conventional interrupts or extended intelligent I/O services for the interrupt of the corresponding peripheral resource
- Selects the channel for the extended intelligent I/O services

(1) Register Configuration

Note: Since read-modify-write type instructions can cause a malfunction, do not access using these instructions.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

(Vss = AVss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Syllibol	Min.	Max.	Oilit	Remarks
	Vcc	Vss - 0.3	Vss + 7.0	V	
Power supply voltage	AVcc*1	Vss - 0.3	Vss + 7.0	V	
	Vavr*1	Vss - 0.3	Vss + 7.0	V	
Programming voltage	V _{PP}	Vss - 0.3	13.0	V	*6
Input voltage*2	Vı	Vss - 0.3	Vcc + 0.3	V	
Output voltage*2	Vo	Vss - 0.3	Vcc + 0.3	V	
#1" lovel	I _{OL1}	_	10	mA	*7
"L" level maximum current*3	I _{OL2}	_	30	mA	*8
"I" lovel everege eutrout eurropt*4	lolav1	_	4	mA	*7
"L" level average output current*4	IOLAV2	_	20	mA	*8
"I" lovel total everage output ourrent*5	\sum lolav1	_	30	mA	*7
"L" level total average output current*5	∑lolav2	_	60	mA	*8
"H" level maximum output current*3	Іон	_	-10	mA	
"H" level average output current*4	Іонач	_	-4	mA	
"H" level total average output current*5	∑Iohav	_	-40	mA	
Power consumption	Pd	_	400	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	- 55	+150	°C	

^{*1:} AVcc and Vavr must not exceed Vcc.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} V_I and V_O must not exceed V_{CC} + 0.3 V.

^{*3:} Maximum output current specifies the peak value of one corresponding pin.

^{*4:} Average output current specifies the average current within a 100 ms interval flowing through one corresponding pin.

^{*5:} Average total output current specifies the average current within a 100 ms interval flowing through all corresponding pins.

^{*6:} MD2 pin of MB90P663A

^{*7:} Pins excluding P60/RT1/U, P61/RT2/V, P62/RT3/W, P63/X, P64/Y and P65/Z pins

^{*8:} P60/RT1/U, P61/RT2/V, P62/RT3/W, P63/X, P64/Y and P65/Z pins

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Rati	ngs	Unit	Remarks
Farameter	Syllibol	Min.	Max.	Oill	Kemarks
Power supply voltage	Vcc	2.7	5.5	\/	During normal operation
Fower supply voltage	Vcc	2.0	5.5	\ \ \ \	Stop operation status is held
Operating temperature	TA	-40	+85	°C	

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

 $(V_{CC} = +2.7 \text{ V to } +5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

		D:			Value			$A = -40^{\circ}\text{C to } +85^{\circ}$
Parameter	Symbol	Pin name	Conditions	Min.	Тур.	Max.	Unit	Remarks
"H" level	Vон	Except P50 to P57	$V_{CC} = 4.5 \text{ V}$ $I_{OH} = -4.0 \text{ mA}$	Vcc - 0.5	_	_	V	
output voltage	VOH	Except F30 to F37	$V_{CC} = 2.7 \text{ V}$ $I_{OH} = -1.6 \text{ mA}$	Vcc - 0.3	_	_	V	
	VoL1 Except P60 to P65		Vcc = 4.5 V loL = 4.0 mA	_	_	0.4	V	
"L" level	VOLI	Except 1 do to 1 do	$V_{CC} = 2.7 \text{ V}$ $I_{OL} = 2.0 \text{ mA}$	_	_	0.4	V	
output voltage	V _{OL2}	P60 to P65	Vcc = 4.5 V loL = 15.0 mA	_	_	1.0	V	
	VOLZ		$V_{CC} = 2.7 \text{ V}$ $I_{OL} = 2.0 \text{ mA}$	_	_	0.4	V	
"H" level	ViH	Pins except V _{IHS} , V _{IHM}	_	0.7 Vcc	_	Vcc + 0.3	V	
input voltage	Vihs	Hysteresis input pins	_	0.8 Vcc	_	Vcc + 0.3	V	*
	Vінм	MD pin	_	Vcc - 0.3	_	Vcc + 0.3	V	
"L" level	VIL	Pins except VILS, VILM	_	Vss - 0.3	_	0.3 Vcc	V	
input voltage	VILS	Hysteresis input pins	_	Vss – 0.3	_	0.2 Vcc	V	*
	VILM	MD pin	_	Vss – 0.3	_	Vss + 0.3	V	
Input leakage current	lı.	Except P50 to P57	Vcc = 5.5 V Vss < Vı < Vcc	-10		10	μА	
Pull-up	_	Pins for which	When Vcc = 5.0 V	25	_	100	kΩ	
resistor	RPUP	pull-up option is selected	When Vcc = 3.0 V	40	_	200	kΩ	
Pull-down	Rpdn	Pins for which pull-down options	When Vcc = 5.0 V	25	80	200	kΩ	
resister	IXPDN	selected	When Vcc = 3.0 V	40	160	400	kΩ	
	Icc	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Internal 16 MHz operation	_	50	70	mA	During normal operation
	Iccs	When Vcc = 5.0 V	Internal 16 MHz operation	_	25	30	mA	During sleep
Supply current	Icc	Whon V ₂₂ = 2.0 V	Internal 8 MHz operation	_	10	20	mA	During normal operation
Iccs		When Vcc = 3.0 V	Internal 8 MHz operation	_	5	10	mA	During sleep
	Іссн	_	T _A = 25°C	_	0.1	10	μΑ	During stop
Input capacitance	Cin	Except AVcc, AVss, Vcc and Vss	_	_	10	_	pF	
Open-drain output leakage current	Ileak	P50 to P57	_	_	0.1	10	μА	N channel Tr o

^{* :} Applies to pins P40 to P47, P50 to P57, P60 to P66, DTTI and $\overline{\text{RST}}.$

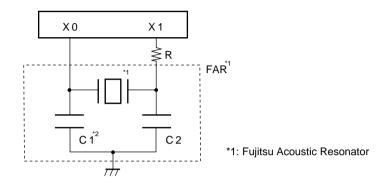
4. AC Characteristics

- (1) Clock Timing Values
- Used at Vcc = 5.0 V ±10%

 $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

		, ,				10 0 10 100 0)	
Parameter	Symbol Pin nan	Pin name	Conditions	Value		Unit	Remarks
Faranietei	Зупрог	Fili liallie	Conditions	Min.	Max.	Oilit	Remarks
Oscillation frequency	Fc	X0, X1	_	3	32	MHz	
Oscillation cycle time	tc	X0, X1	_	31.25	333	ns	
Frequency fluctuation ratio* (when locked)	Δf	_	_	_	3	%	
Input clock pulse width	Pwh PwL	X0	_	10	_	ns	Use duty ratio of 30% to 70% as guideline
Input clock rising and falling times	t _{cr}	X0	_	_	5	ns	
Internal operating clock frequency	fсР	_	_	1.5	16	MHz	
Internal operating clock cycle time	t CP	_	_	62.5	666	ns	

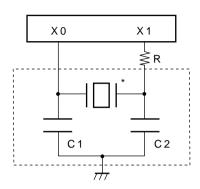
* : The frequency fluctuation ratio represents the maximum fluctuation from the central frequency as a percentage when a multiplier is locked.


• Used at Vcc = 2.7 V (minimum)

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

			(V C	3 = +2.7 V	10 +3.5 V, V	rss = 0.0	7 , $1A = -40^{\circ}C$ to $+85^{\circ}C$
Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
raiailletei	Зупьог	Fili liaille	Conditions	Min.	Max.	Onit	Remarks
Oscillation frequency	Fc	X0, X1	_	3	16	MHz	
Oscillation cycle time	t c	X0, X1	_	62.5	333	ns	
Input clock pulse width	Pwh PwL	X0	_	20	_	ns	Use duty ratio of 30% to 70% as guideline
Input clock rising and falling times	t _{cr}	X0	_	_	5	ns	
Internal operating clock frequency	f CP	_	_	1.5	8	MHz	
Internal operating clock cycle time	t CP	_	_	125	666	ns	

(2) Recommended Resonator Manufacturers


• Sample Application of Piezoelectric Resonator (FAR Family)

FAR part number (built-in capacitor type)	Frequency (MHz)	Dumping resistor	Initial deviation of FAR frequency (T _A = +25°C)	Temperature characteristics of FAR frequency (T _A = -20°C to +60°C)	Loading*2 capacitors
FAR-C4CC-02000-L20	2.00	510 Ω	±0.5%	±0.5%	
FAR-C4SA-04000-M01	4.00	_	±0.5%	±0.5%	
FAR-C4CB-04000-M00	4.00	_	±0.5%	±0.5%	
FAR-C4CB-08000-M02	8.00	_	±0.5%	±0.5%	Built-in
FAR-C4CB-12000-M02	12.00	_	±0.5%	±0.5%	- Dullt-III
FAR-C4CB-16000-M02	16.00	_	±0.5%	±0.5%	
FAR-C4CB-20000-L14B	19.80	_	±0.5%	±0.5%	
FAR-C4CB-24000-L14A	23.76	_	±0.5%	±0.5%	

Inquiry: FUJITSU LIMITED

• Sample Application of Ceramic Resonator

Mask Products

Resonator manufacturer*	Resonator	Frequency (MHz)	C1 (pF)	C2 (pF)	R
	KBR-2.0MS	2.00	150	150	
	PBRC2.00A	2.00	150	150	
	KBR-4.0MSA		33	33	680 Ω
	KBR-4.0MKS	4.00	Built-in	Built-in	680 Ω
	PBRC4.00A	4.00	33	33	680 Ω
	PBRC4.00B		Built-in	Built-in	680 Ω
	KBR-6.0MSA		33	33	_
	KBR-6.0MKS	6.00	Built-in	Built-in	1
Kyocera Corporation	PBRC6.00A	0.00	33	33	_
	PBRC6.00B		Built-in	Built-in	- 1
	KBR-8.0M	8.00	33	33	560 Ω
	PBRC8.00A	9.00	33	33	_
	PBRC8.00B	8.00	Built-in	Built-in	- 1
	KBR-10.0M	10.00	33	33	330 Ω
	PBRC10.00B	10.00	Built-in	Built-in	680 Ω
	KBR-12.0M	12.00	33	33	330 Ω
	PBRC12.00B	12.00	Built-in	Built-in	680 Ω

(Continued)

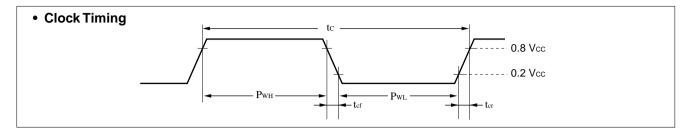
(Continued)

Resonator manufacturer*	Resonator	Frequency (MHz)	C1 (pF)	C2 (pF)	R
	CSA2.00MG040	2.00	100	100	_
	CST2.00MG040	2.00	Built-in	Built-in	
	CSA4.00MG040	4.00	100	100	_
	CST4.00MGW040	4.00	Built-in	Built-in	
	CSA6.00MG	6.00	30	30	_
	CST6.00MGW	6.00	Built-in	Built-in	
	CSA8.00MTZ	8.00	30	30	_
	CST8.00MTW	6.00	Built-in	Built-in	
Murata Mfg. Co., Ltd.	CSA10.00MTZ	10.00	30	30	_
	CST10.00MTW	10.00	Built-in	Built-in	
	CSA12.00MTZ	12.00	30	30	_
	CST12.00MTW	12.00	Built-in	Built-in	
	CSA16.00MXZ040	16.00	15	15	_
	CST16.00MXW0C3	16.00	Built-in	Built-in	
	CSA20.00MXZ040	20.00	10	10	_
	CSA24.00MXZ040	24.00	5	5	_
	CSA32.00MXZ040	32.00	5	5	_

Inquiry: Kyocera Corporation
• AVX Corporation

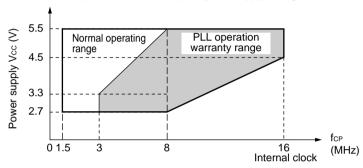
North American Sales Headquarters: TEL 1-803-448-9411

AVX Limited

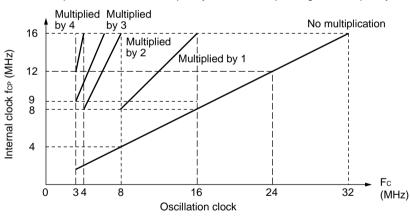

European Sales Headquarters: TEL 44-1252-770000

• AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 852-363-3303

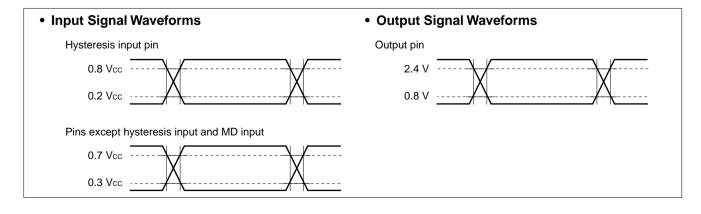

Murata Mfg. Co., Ltd.

Murata Electronics North America, Inc.: TEL 1-404-436-1300
Murata Europe Management GmbH: TEL 49-911-66870
Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233



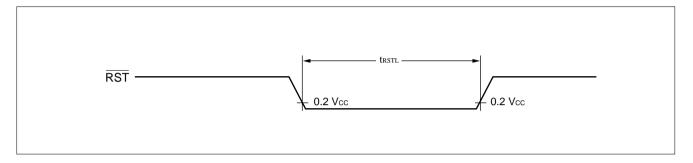
PLL Operation Warranty Range

Relationship between clock frequency and supply voltage



Relationship between oscillator frequency and internal operating clock frequency

Note: Even in the case of evaluation tool, operation is assured down to 2.7 V.


AC specification values are specified for the measured reference voltages given below.

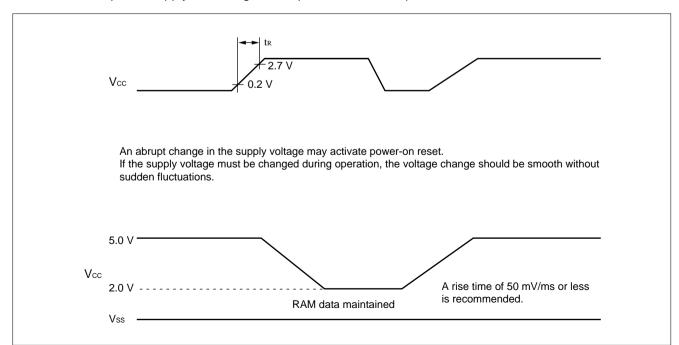
(3) Reset Input Specifications

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Value		Value Unit		
Farameter	Symbol	Fili lialile	Conditions	Min.	Max.	Offic	Remarks	
Reset input time	t RSTL	RST	_	16	_	Machine cycle		

(4) Power-On Reset

 $(Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

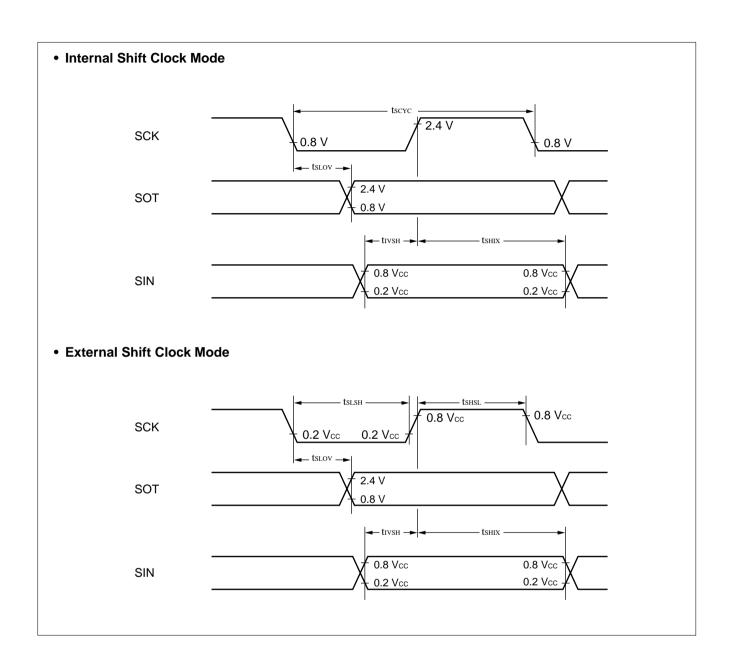

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks	
Farameter	Зупьог	Fili lialile	Conditions	Min.		Onit	Kemarks	
Power supply rise time	t R	Vcc		_	30	ms	*	
Power supply cutoff time	toff	Vcc	_	1	_	ms	Due to repeated operations	

^{*:} Vcc should be lower than 0.2 V before power supply rise.

Notes: • The above specifications are the numeric values needed for causing a power-on reset.

• There are built in resisters initialized only by power on reset in the device.

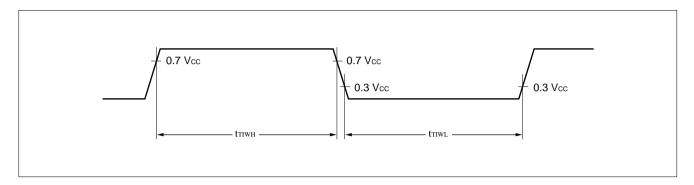
Turn on power supply according to the specification at the point of this initialization.


(5) UART timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Dougnator	Company	Pin		Va	lue		Domonico	
Parameter	Symbol	name	Conditions	Min.	Max.	Unit	Remarks	
Serial clock cycle time	tscyc	SCK	_	8 tcp	_	ns		
$SCK \downarrow \rightarrow SOT$ delay time	tslov	SCK	Vcc = 5.0 V ±10%	-80	80	ns		
30N ↓ → 301 delay liftle	tSLOV	SOT	Vcc = 3.0 V ±10%	-120	120	ns	C _L = 80 pF + 1 TTL	
Valid SIN → SCK ↑	tıvsh	SCK	Vcc = 5.0 V ±10%	100	_	ns	for internal clock operation output	
Valid SIN → SCK 1	UVSH	SIN	Vcc = 3.0 V ±10%	200	_	ns	pin	
SCK ↑ → valid SIN hold	t shix	SCK	Vcc = 5.0 V ±10%	60	_	ns		
time	LSHIX	SIN	Vcc = 3.0 V ±10%	120	_	ns		
Serial clock H pulse width	t sHSL	SCK	_	4 tcp	_	ns		
Serial clock L pulse width	t slsh	SCK	_	4 tcp	_	ns		
$SCK \downarrow \to SOT$ delay time	tslov	SCK	Vcc = 5.0 V ±10%	_	150	ns	C _L = 80 pF + 1 TTL for external clock	
30N ↓ → 301 delay liftle	tSLOV	SOT	Vcc = 3.0 V ±10%	_	200	ns	operation output	
Valid SIN → SCK ↑	tıvsh	SCK	Vcc = 5.0 V ±10%	60	_	ns	pin	
valid SIN → SCN	UVSH	SIN	Vcc = 3.0 V ±10%	120	_	ns		
SCK ↑ → valid SIN hold	t shix	SCK	Vcc = 5.0 V ±10%	60		ns		
time	ISHIX	SIN	Vcc = 3.0 V ±10%	120		ns		

Notes: • These are AC specification during CLK synchronous mode.


- \bullet $C_{\text{\tiny L}}$ is the load capacity value assigned to the pin during testing.
- tcp is the machine cycle time (unit: ns).

(6) Timer input timing

 $(V_{CC} = +2.7 \text{ V to } +5.5 \text{ V}, \text{Vss} = 0.0 \text{ V}, \text{T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
Farameter	Зупроі	Filitianie	Conditions	Min.	Max.	Oill	Kemarks
Input pulse width	ttiwh ttiwl	TIM0 to TIM3	_	4 tcp	_	ns	

(7) Trigger input timing

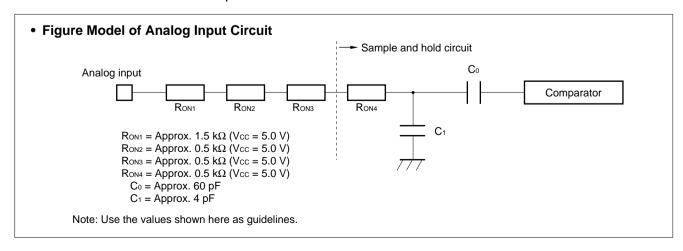
 $(V_{CC} = +2.7 \text{ V to } +5.5 \text{ V}, \text{Vss} = 0.0 \text{ V}, \text{T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Din nama	Conditions	Va	lue	Unit	Remarks
	Зупьог	Pin name	Conditions	Min.	Max.	Ullit	Remarks
Input pulse width	t TRGH	ATG, DTTI, TRG, INT4 to INT7		5 t cp	_	ns	
	t TRGL	ATG, DTTI, TRG, INTO to INT3		5 t cp	_	ns	

5. Electrical Characteristics of A/D Converter

 $(AVcc = Vcc = +2.7 \text{ V to } +5.5 \text{ V}, AVss = Vss = 0.0 \text{ V}, 2.7 \text{ V} \le AVR, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name		Unit		
raianietei	Symbol	riii iiaiiie	Min.	Тур.	Max.	Ullit
Resolution	_	_	_	10	10	bit
Total error	_	_	_	_	±3.0	LSB
Linearity error	_	_	_	_	±2.0	LSB
Differential linearity error	_	_	_	_	±1.5	LSB
Zero transition voltage	Vот	AN0 to AN7	-1.5	+0.5	+2.5	LSB
Full-scale transition voltage	VFST	AN0 to AN7	AVR – 4.5	AVR – 1.5	AVR + 0.5	LSB
Conversion time			6.125*1	_	_	μs
Conversion time	_	_	12.25*2	_	_	μs
Analog port input voltage	Iain	AN0 to AN7	_	0.1	10	μΑ
Analog input voltage	VAIN	AN0 to AN7	0	_	AVR	V
Reference voltage	_	AVR	3.5	_	AVcc	V
Supply current	IA	AVcc	_	3	_	mA
Supply current	Іан	AVcc	_	_	5 ^{*3}	μΑ
Defended valte as a comply assured	IR	AVR	_	200	_	μΑ
Reference voltage supply current	IRH	AVR	_	_	5*3	μΑ
Variation between channels	_	AN0 to AN7	_	_	4	LSB


^{*1:} $Vcc = 5.0 \text{ V} \pm 10\%$ at 16 MHz machine clock

Notes: • The relative error becomes larger as the reference voltage (AVR) becomes smaller.

• Be sure to use the A/D converter only when output impedance of the external analog input circuit meets the following conditions.

External circuit output impedance < approx. 7 k Ω

- If the output impedance of the external circuit is too high, there may not be enough time to sample the analog voltage. (Sampling time = 3.75 μs @4 MHz (equivalent to internal 16 MHz when multiplying by 4))
- For an external capacitor to be provided outside the chip, its capacity should desirably be thousands times larger than of the capacity in the chip taking in consideration the influence of the capacity destribution of the external and internal capacitors.

^{*2:} $Vcc = 3.0 \text{ V} \pm 10\%$ at 8 MHz machine clock

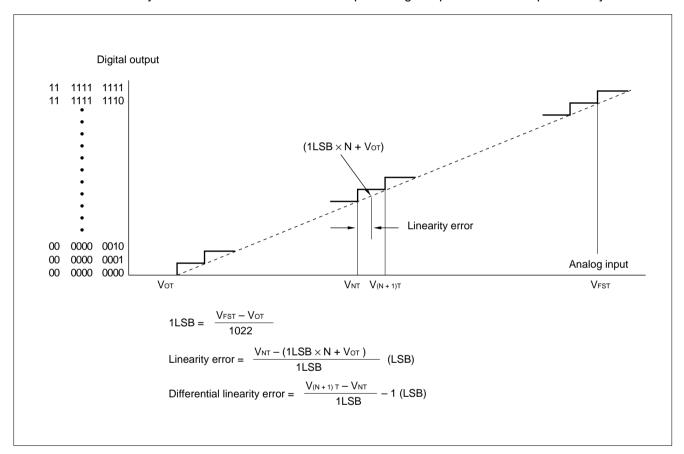
^{*3:} Current when CPU is stopped and A/D converter is not operating (when Vcc = AVcc = AVR = 5.0 V)

6. Definitions of A/D Converter Terms

Resolution : Analog transition observed with an A/D converter.

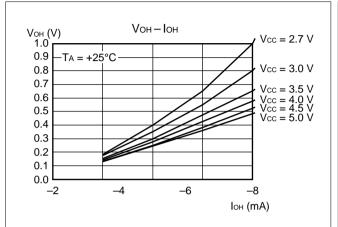
Analog voltage can be divided in $1024 = 2^{10}$ parts at 10-bit resolution.

Total error : This refers to the difference between actual and logical values. This error is

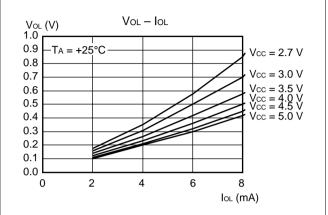

caused by offset errors, gain errors, non-linearity errors and noise.

Linearity error : Deviation of the line drawn between the zero transition point (00 0000 0000 \leftrightarrow

00 0000 0001) and the full-scale transition point (11 1111 1110 \leftrightarrow 11 1111

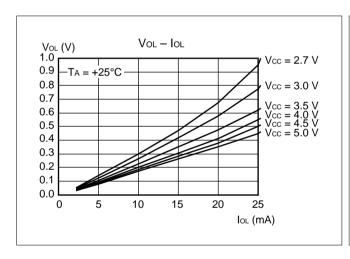

1111) for the device from actual conversion characteristics.

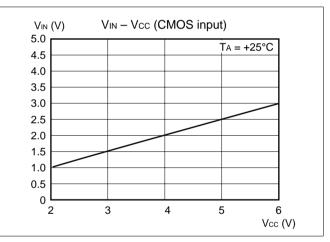
Differential linearity error : Deviation from ideal input voltage required to shift output code by one LSB.

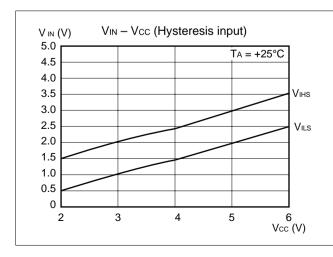


■ EXAMPLES CHARACTERISTICS

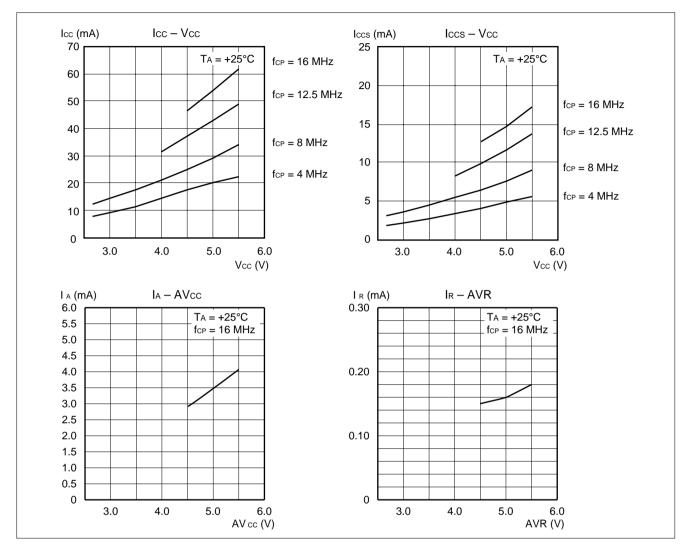
(1) "H" Level Output Voltage

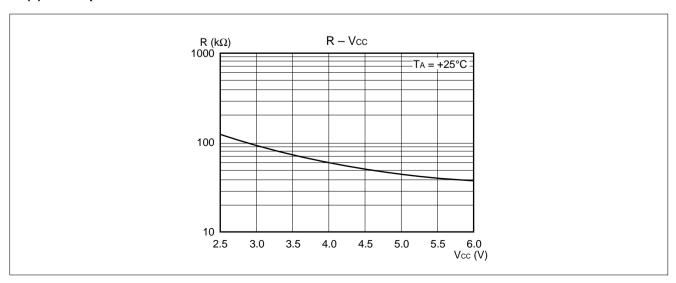



(2) "L" Level Output Voltage


(3) "L" Level Output Voltage (P60 to P65)

(4) "H" Level Input Voltage/"L" Level Input Voltage


(5) "H" Level Input Voltage/"L" Level Input Voltage


V_{IHS}: Threshold when input voltage in hysteresis characteristics is set to "H" level

VILS: Threshold when input voltage in hysteresis characteristics is set to "L" level

(6) Power Supply Current (fcp = Internal frequency)

(7) Pull-up Resistor

To Top / Lineup / Index MB90660A Series

■ INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.
#	Indicates the number of bytes.
~	Indicates the number of cycles. m: When branching n: When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
В	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the "~" column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z: Transfers "0". X: Extends with a sign before transferring. -: Transfers nothing.
АН	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00н to AH. X : Transfers 00н or FFн to AH by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),
S	N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction.
Т	- : No change.
N	S: Set by execution of instruction. R: Reset by execution of instruction.
Z	
V	
С	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte: Lower 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL:AH
AH AL	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFн)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address

(Continued)

(Continued)

Symbol	Meaning
rel	Branch specification relative to PC
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	Notation			Address format	Number of bytes in address extension *
00 01 02 03 04 05 06 07	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	_
08 09 0A 0B	@RW0 @RW1 @RW2 @RW3			0	
0C 0D 0E 0F	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post-increment	0
10 11 12 13 14 15 16 17	@RW0 + disp8 @RW1 + disp8 @RW2 + disp8 @RW3 + disp8 @RW4 + disp8 @RW5 + disp8 @RW5 + disp8			Register indirect with 8-bit displacement	1
18 19 1A 1B	@RW0 + disp16 @RW1 + disp16 @RW2 + disp16 @RW3 + disp16		p16 p16	Register indirect with 16-bit displacement	2
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16			Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Note: The number of bytes in the address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the tables of instructions.

Table 4 Number of Execution Cycles for Each Type of Addressing

Code	Operand	(a) Number of execution cycles for each type of addressing	Number of register accesses for each type of addressing
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	4 4 2 1	2 2 0 0

Note: "(a)" is used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

	(b) l	byte	(c) v	vord	(d) long			
Operand	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access		
Internal register	+0	1	+0	1	+0	2		
Internal memory even address Internal memory odd address	+0 +0	1 1	+0 +2	1 2	+0 +4	2 4		
Even address on external data bus (16 bits) Odd address on external data bus (16 bits)	+1 +1	1 1	+1 +4	1 2	+2 +8	2 4		
External data bus (8 bits)	+1	1	+4	2	+8	4		

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

• When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	_	+2
External data bus (16 bits)	_	+3
External data bus (8 bits)	+3	_

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

• Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Table 7 Transfer Instructions (Byte) [41 Instructions]

N	Inemonic	#	~	RG	В	Operation	LH	AH	I	S	Т	N	Z	٧	С	RMW
MOV	A, dir	2	3	0	(b)	byte (A) ← (dir)	Z	*	_	_	_	*	*	_	_	_
MOV	A, addr16	3	4	0	(b)	byte (A) ← (addr16)	Z	*	_	_	_	*	*	_	_	_
MOV	A, Ri	1	2	1	0	byte (A) \leftarrow (Ri)	Z	*	_	_	_	*	*	_	_	_
MOV	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	Z	*	_	_	_	*	*	_	_	_
MOV	A, eam	2+	3+ (a)	0	(b)	byte (A) \leftarrow (eam)	Z	*	_	_	_	*	*	_	_	_
MOV	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	Z Z	*	_	_	_	*	*	_	_	_
MOV	A, #imm8	2	2	0	\o´	byte (A) ← imm8	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, @A	2	3	0	(b)	byte (A) \leftarrow ((A))	Z	_	_	_	_	*	*	_	_	_
MOV	A, @RLi+disp8	3	10	2	(b)	byte (A) \leftarrow ((RLi)+disp8)	Z Z	*	_	_	_	*	*	_	_	_
MOVN	A, #imm4	1	1	0	O O	byte (A) ← imm4	Z	*	_	_	_	R	*	_	_	-
MOVX	A, dir	2	3	0	(b)	byte (A) ← (dir)	Х	*	_	_	_	*	*	_	_	_
MOVX	A, addr16	3	4	0	(b)	byte (A) ← (addr16)	X	*	_	—	—	*	*	—	_	_
MOVX	A, Ri	2	2	1	0	byte (A) \leftarrow (Ri)	X	*	_	—	—	*	*	—	_	_
MOVX	A, ear	2	2	1	0	byte (A) ← (ear)	X	*	_	—	—	*	*	—	_	_
MOVX	A, eam	2+	3+ (a)	0	(b)	byte (A) \leftarrow (eam)	X	*	_	—	—	*	*	—	_	_
MOVX	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	X	*	_	_	_	*	*	_	_	_
MOVX	A, #imm8	2	2	0	0	byte (A) ← imm8	X	*	_	—	_	*	*	_	_	_
MOVX	A, @A	2	3	0	(b)	byte (A) \leftarrow ((A))	X	_	_	—	—	*	*	—	_	_
MOVX	A,@RWi+disp8	2	5	1	(b)	byte (A) \leftarrow ((RWi)+disp8)	X	*	_	_	_	*	*	_	_	_
MOVX	A, @RLi+disp8	3	10	2	(b)	byte (A) \leftarrow ((RLi)+disp8)	Х	*	_	_	_	*	*	_	-	_
MOV	dir, A	2	3	0	(b)	byte (dir) ← (A)	_	_	_	_	_	*	*	_	_	_
MOV	addr16, A	3	4	0	(b)	byte (addr16) ← (A)	-	_	_	-	—	*	*	—	_	_
MOV	Ri, A	1	2	1	0	byte (Ri) \leftarrow (A)	-	_	_	_	_	*	*	_	_	_
MOV	ear, A	2	2	1	0	byte (ear) ← (A)	-	_	_	_	—	*	*	—	_	_
MOV	eam, A	2+	3+ (a)	0	(b)	byte (eam) \leftarrow (A)	-	_	_	_	—	*	*	—	_	_
MOV	io, A	2	3	0	(b)	byte (io) \leftarrow (A)	-	_	_	-	—	*	*	—	_	_
MOV	@RLi+disp8, A	3	10	2	(b)	byte ((RLi) +disp8) \leftarrow (A)	-	_	_	_	—	*	*	—	_	_
MOV	Ri, ear	2	3	2	0	byte (Ri) ← (ear)	-	_	_	-	—	*	*	—	_	_
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte (Ri) ← (eam)	-	_	_	-	—	*	*	—	_	_
MOV	ear, Ri	2	4	2	0	byte (ear) ← (Ri)	-	_	_	-	—	*	*	—	_	_
MOV	eam, Ri	2+	5+ (a)	1	(b)	byte (eam) ← (Ri)	-	_	_	-	—	*	*	—	_	_
MOV	Ri, #imm8	2	2	1	0	byte (Ri) ← imm8	-	_	_	-	—	*	*	—	_	_
MOV	io, #imm8	3	5	0	(b)	byte (io) ← imm8	-	_	_	_	—	-	_	—	_	_
MOV	dir, #imm8	3	5	0	(b)	byte (dir) ← imm8	-	_	_	_	—	-	_	—	_	_
MOV	ear, #imm8	3	2	1	0	byte (ear) ← imm8	-	_	-	_	-	*	*	_	_	_
MOV	eam, #imm8	3+	4+ (a)	0	(b)	byte (eam) ← imm8	-	-	_	_	_	-	_	_	_	_
MOV	@AL, AH	2	3 ′	0	(b)	byte ((A)) ← (AH)	-	-	_	-	-	*	*	_	_	-
/MOV																
XCH	A, ear	2	4	2	0	byte (A) \leftrightarrow (ear)	Z Z	_	_	_	_	_	_	_	_	_
XCH	A, eam	2+	5+ (a)	0	2× (b)	byte (A) \leftrightarrow (eam)	Z	_	-	-	-	-	_	-	_	-
XCH	Ri, ear	2	7	4	0	byte (Ri) ↔ (ear)	-	-	-	-	-	-	_	-	_	_
XCH	Ri, eam	2+	9+ (a)	2	2× (b)	byte (Ri) \leftrightarrow (eam)	-	_	_	-	-	-	_	_	_	_

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	AH	I	S	Т	N	Z	٧	С	RMW
MOVW A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	-	*	_	-	_	*	*	_	_	_
MOVW A, addr16	3	4	0	(c)	word (A) \leftarrow (addr16)	-	*	_	_	_	*	*	_	-	-
MOVW A, SP	1	1	0	0	word (A) \leftarrow (SP)	-	*	_	_	_	*	*	_	-	-
MOVW A, RWi MOVW A, ear	1 2	2 2	1	0	word (A) \leftarrow (RWi) word (A) \leftarrow (ear)	_	*	_	_	_	*	*	_	_	_
MOVW A, ean	2+	3+ (a)	0	(c)	word (A) \leftarrow (earn)	_	*	_	_		*	*	_	_	_
MOVW A, io	2	3	ő	(c)	word (A) \leftarrow (io)	_	*	_	_	_	*	*	_	_	_
MOVW A, @A	2	3	0	(c)	word (A) \leftarrow ((A))	_	_	_	_	_	*	*	_	_	_
MOVW A, #imm16	3	2	0)O	word (A) \leftarrow imm16	_	*	_	_	_	*	*	_	_	-
MOVW A, @RWi+disp8	2	5	1	(c)	word (A) \leftarrow ((RWi) +disp8)	-	*	_	_	_	*	*	-	_	-
MOVW A, @RLi+disp8	3	10	2	(c)	word (A) \leftarrow ((RLi) +disp8)	-	*	_	-	_	*	*	_	-	-
MOVW dir, A	2	3	0	(c)	word (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW addr16, A	3	4	0	(c)	word (addr16) \leftarrow (A)	-	_	_	_	_	*	*	-	-	-
MOVW SP, A	1	1	0	0	word (SP) \leftarrow (A)	-	_	_	_	_	*	*	_	-	-
MOVW RWi, A	1	2	1	0	word (RWi) \leftarrow (A)	_	-	_	_	_	*	*	_	-	-
MOVW ear, A MOVW eam, A	2 2+	2 3+ (a)	1	(c)	word (ear) \leftarrow (A) word (eam) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW earn, A	2+	3+ (a)	0	(c)	word (io) \leftarrow (A)	_	_	_	_		*	*		_	_
MOVW @RWi+disp8, A	2	5	1	(c)	word ((RWi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW @RLi+disp8, A	3	10	2	(c)	word ((RLi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, ear	2	3	2	(0)	word (RWi) \leftarrow (ear)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, eam	2+	4+ (a)	1	(c)	word (RWi) \leftarrow (eam)	_	-	_	_	_	*	*	_	_	-
MOVW ear, RWi	2	4	2	0	word (ear) \leftarrow (RWi)	-	–	_	_	_	*	*	_	_	-
MOVW eam, RWi	2+	5+ (a)	1	(c)	word (eam) \leftarrow (RWi)	_	-	_	_	_	*	*	-	-	-
MOVW RWi, #imm16	3	2	1	0	word (RWi) \leftarrow imm16	_	_	_	_	_	*	*	_	_	-
MOVW io, #imm16	4	5	0	(c)	word (io) \leftarrow imm16	_	-	_	_	_	- *	*	_	_	-
MOVW ear, #imm16 MOVW eam, #imm16	4 4+	2 4+ (a)	1	(c)	word (ear) \leftarrow imm16 word (eam) \leftarrow imm16	_	_	_	_	_		_	_	_	_
INOVVV earn, #iniiii116	4+	4+ (a)	U	(0)		_	_	_	_	_		_	_	_	_
MOVW AL, AH	2	3	0	(c)	word ((A)) \leftarrow (AH)	-	_	_	_	_	*	*	_	_	-
/MOVW @A, T															
XCHW A, ear	2	4	2	0	word (A) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCHW A, eam	2+	5+ (a)	0	2× (c)	word $(A) \leftrightarrow (eam)$	_	_	_	_	_	_	_	_	_	_
XCHW RWi, ear	2	7	4	0	word (RWi) \leftrightarrow (ear)	_	-	_	_	_	_	_	-	_	-
XCHW RWi, eam	2+	9+ (a)	2	2× (c)	word (RWi) \leftrightarrow (eam)	_	_	_	_	_	_	_	_	_	_
MOVL A, ear	2	4	2	0	$long (A) \leftarrow (ear)$	-	-	_	-	_	*	*	_	_	-
MOVL A, eam	2+	5+ (a)	0	(d)	$long (A) \leftarrow (eam)$	-	-	_	_	_	*	*	_	-	-
MOVL A, #imm32	5	3	0	0	long (A) ← imm32	-	-	-	-	_	*	*	_	-	-
MOVL ear, A	2	4	2	0	long (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mner	monic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
	A,#imm8	2	2	0	0	byte (A) \leftarrow (A) +imm8	Z	_	_	_	_	*	*	*	*	_
	A, dir	2	5	0	(b)	byte (A) \leftarrow (A) $+$ (dir)	Ζ	-	-	_	_	*	*	*	*	-
	A, ear	2	3	1	0	byte (A) \leftarrow (A) +(ear)	Z	-	-	_	_	*	*	*	*	-
	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) +(eam)	Z	_	_	_	_	*	*	*	*	_
	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) + (A)	– Z	_	_	_	_	*	*	*	*	_ *
ADD ADDC	eam, A A	2+ 1	5+ (a) 2	0	$2\times$ (b)	byte (eam) \leftarrow (eam) + (A) byte (A) \leftarrow (AH) + (AL) + (C)	Z	_	_		_	*	*	*	*	_
ADDC	A, ear	2	3	1	0	byte (A) \leftarrow (A) + (ear) + (C)	Z	_	_		_	*	*	*	*	
ADDC	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) + (earl) + (C) byte (A) \leftarrow (A) + (earr) + (C)	Z	_	_		_	*	*	*	*	_
ADDDC		1	3	0	0	byte (A) \leftarrow (AH) + (AL) + (C) (decimal)	Z	_	_	_	_	*	*	*	*	_
SUB	A, #imm8	2	2	0	ő	byte (A) \leftarrow (A) –imm8	Z	_	_	_	_	*	*	*	*	_
1	A, dir	2	5	Ö	(b)	byte (A) \leftarrow (A) – (dir)	Z	_	_	_	_	*	*	*	*	_
	A, ear	2	3	1	\o´	byte (A) \leftarrow (A) – (ear)	Ζ	_	_	_	_	*	*	*	*	_
	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow (A) - (eam)$	Ζ	_	_	_	_	*	*	*	*	-
	ear, A	2	3	2	O O	byte (ear) \leftarrow (ear) $-$ (A)	–	-	_	_	_	*	*	*	*	-
SUB	eam, A	2+	5+ (a)	0	2× (b)	byte (eam) \leftarrow (eam) $-$ (A)	_	_	_	_	_	*	*	*	*	*
SUBC	Α	1	2	0	0	byte (A) \leftarrow (AH) – (AL) – (C)	Z	-	_	_	_	*	*	*	*	-
	A, ear	2	3	1	0	byte (A) \leftarrow (A) $-$ (ear) $-$ (C)	Ζ	_	-	_	_	*	*	*	*	-
SUBC	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) $-$ (eam) $-$ (C)	Z	-	-	_	-	*	*	*	*	-
SUBDC	Α	1	3	0	0	byte (A) \leftarrow (AH) – (AL) – (C) (decimal)	Z	_	_	_	_	*		*		_
ADDW	Α	1	2	0	0	word (A) \leftarrow (AH) + (AL)	-	_	_	_	_	*	*	*	*	_
	A, ear	2	3	1	0	word (A) \leftarrow (A) +(ear)	-	-	-	_	_	*	*	*	*	-
1	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) +(eam)	-	-	_	_	-	*	*	*	*	-
ADDW	A, #imm16	3	2	0	0	word (A) \leftarrow (A) +imm16	-	-	_	_	_	*	*	*	*	-
	ear, A	2	3	2	0	word (ear) \leftarrow (ear) + (A)	-	-	_	_	-	*	*	*	*	
	eam, A	2+	5+ (a)	0	2× (c)	word (eam) \leftarrow (eam) + (A)	-	-	-	_	_	*	*	*	*	
ADDCW		2	3	1	0	word (A) \leftarrow (A) + (ear) + (C)	_	_	_	_	_	*	*	*	*	_
ADDCW SUBW		2+ 1	4+ (a) 2	0	(c)	word (A) \leftarrow (A) + (eam) + (C) word (A) \leftarrow (AH) – (AL)	_	_		_		*	*	*	*	_
	A, ear	2	3	1	0	word (A) \leftarrow (An) – (AL) word (A) \leftarrow (A) – (ear)	_	_	_		_	*	*	*	*	
	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) – (earl) word (A) \leftarrow (A) – (earn)			_		_	*	*	*	*	_
SUBW	A, #imm16	3	2	0	0	word (A) \leftarrow (A) – (Carry) word (A) \leftarrow (A) –imm16	_	_	_	_	_	*	*	*	*	_
	ear, A	2	3	2	ő	word (ear) \leftarrow (ear) – (A)	_	_	_	_	_	*	*	*	*	_
	eam, A	2+	5+ (a)	0	2× (c)	word (eam) \leftarrow (eam) – (A)	_	_	_	_	_	*	*	*	*	*
SUBCW		2	3	1	0	word (A) \leftarrow (A) – (ear) – (C)	_	_	_	_	_	*	*	*	*	_
SUBCW		2+	4+ (a)	0	(c)	word $(A) \leftarrow (A) - (eam) - (C)$	-	_	_	_	_	*	*	*	*	-
ADDL	A, ear	2	6	2	0	$long(A) \leftarrow (A) + (ear)$	_	_	_	_	_	*	*	*	*	_
ADDL	A, eam	2+	7+ (a)	0	(d)	$long(A) \leftarrow (A) + (eam)$	_	_	_	_	_	*	*	*	*	_
ADDL	A, #imm32	5	4 ′	0)O´	$long(A) \leftarrow (A) + lmm32$	-	-	_	_	_	*	*	*	*	-
SUBL	A, ear	2	6	2	0	$long(A) \leftarrow (A) - (ear)$	-	-	_	_	_	*	*	*	*	_
SUBL	A, eam	2+	7+ (a)	0	(d)	$long (A) \leftarrow (A) - (eam)$	-	-	_	_	-	*	*	*	*	-
SUBL	A, #imm32	5	4	0	0	long (A) \leftarrow (A) $-imm32$	-	-	-	_	_	*	*	*	*	-

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mr	nemonic	#	~	RG	В	Operation	LH	AH	ı	S	Т	N	Z	٧	С	RMW
INC	ear	2	2	2	0	byte (ear) ← (ear) +1	-	_	_	_	_	*	*	*	_	_
INC	eam	2+	5+ (a)	0	2× (b)	byte (eam) ← (eam) +1	_	_	-	_	_	*	*	*	_	*
DEC	ear	2	3	2	0	byte (ear) ← (ear) −1	_	_	_	_	_	*	*	*	_	-
DEC	eam	2+	5+ (a)	0	2× (b)	byte (eam) ← (eam) −1	_	_	_	_	_	*	*	*	_	*
INCW	ear	2	3	2	0	word (ear) ← (ear) +1	_	_	_	_	_	*	*	*	_	-
INCW	eam	2+	5+ (a)	0	2× (c)	word (eam) ← (eam) +1	_	_	_	_	_	_		^	_	
DECW	ear	2	3	2	0	word (ear) ← (ear) -1	_	_	–	_	_	*	*	*	_	- 1
DECW	eam	2+	5+ (a)	0	2× (c)	word (eam) ← (eam) -1	_	_	_	_	_	*	*	*	_	*
INCL	ear	2	7	4	0	long (ear) ← (ear) +1	_	_	_	_	_	*	*	*	_	-
INCL	eam	2+	9+ (a)	0	2× (d)	long (eam) ← (eam) +1	_	_	_	_	_			.,	_	
DECL	ear	2	7	4	0	long (ear) ← (ear) -1	_	_	_	_	_	*	*	*	_	-
DECL	eam	2+	9+ (a)	0	2× (d)	long (eam) ← (eam) -1	-	_	_	_	_	*	*	*	-	*

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	AH	ı	S	Т	N	Z	٧	С	RMW
CMP	Α	1	1	0	0	byte (AH) – (AL)	l –	_	_	_	_	*	*	*	*	_
CMP	A, ear	2	2	1	0	byte (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMP	A, eam	2+	3+ (a)	0	(b)	byte (A) ← (eam)	-	_		_	-	*	*	*	*	_
CMP	A, #imm8	2	2	0	0	byte (A) ← imm8	-	_	-	_	-	*	*	*	*	-
CMPW	Α	1	1	0	0	word (AH) – (AL)	_	_	_	_	_	*	*	*	*	_
CMPW	A, ear	2	2	1	0	word (A) ← (ear)	-	_		_	-	*	*	*	*	- I
CMPW	A, eam	2+	3+ (a)	0	(c)	word (A) ← (eam)	-	_		_	-	*	*	*	*	- I
CMPW	A, #imm16	3	2	0	0	word (A) \leftarrow imm16	-	_	-	_	-	*	*	*	*	-
CMPL	A, ear	2	6	2	0	word (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMPL	A, eam	2+	7+ (a)	0	(d)	word (A) ← (eam)	-	_	_	_	-	*	*	*	*	_
CMPL	A, #imm32	5	3	0	0	word (A) \leftarrow imm32	-	_	-	_	-	*	*	*	*	-

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnem	onic	#	~	RG	В	Operation	LH	AH	I	S	T	N	Z	٧	С	RMW
DIVU	Α	1	*1	0	0	word (AH) /byte (AL)	_	_	_	_	_	_	_	*	*	_
DIVU	A, ear	2	*2	1	0	Quotient → byte (AL) Remainder → byte (AH) word (A)/byte (ear) Quotient → byte (A) Remainder → byte (ear)	_	_	_	_	_	_	_	*	*	_
DIVU	A, eam	2+	*3	0	*6	word (A)/byte (eam)	_	_	_	_	_	_	_	*	*	-
DIVUW	A, ear	2	*4	1	0	Quotient → byte (A) Remainder → byte (eam) long (A)/word (ear) Quotient → word (A) Remainder → word (ear)	_	_	_	_	_	_	_	*	*	_
DIVUW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	_	_	-	_	_	_	_	*	*	_
MULU	Α	1	*8	0	0	byte (AH) *byte (AL) → word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, ear	2	*9	1		byte (A) *byte (ear) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, eam	2+	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	_	-	_	_	_	_	-	_	_	-
MULUW MULUW MULUW	A A, ear A, eam	1 2 2+	*11 *12 *13	0 1 0		word (AH) *word (AL) \rightarrow long (A) word (A) *word (ear) \rightarrow long (A) word (A) *word (eam) \rightarrow long (A)	1 1 1	_ _ _	1 1 1	1 1 1	_ _ _	_ _ _			_ _ _	_ _ _

^{*1: 3} when the result is zero, 7 when an overflow occurs, and 15 normally.

^{*2: 4} when the result is zero, 8 when an overflow occurs, and 16 normally.

^{*3: 6 + (}a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.

^{*4: 4} when the result is zero, 7 when an overflow occurs, and 22 normally.

^{*5: 6 + (}a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.

^{*6: (}b) when the result is zero or when an overflow occurs, and $2 \times$ (b) normally.

^{*7: (}c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.

^{*8: 3} when byte (AH) is zero, and 7 when byte (AH) is not zero.

^{*9: 4} when byte (ear) is zero, and 8 when byte (ear) is not zero.

^{*10:} 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.

^{*11: 3} when word (AH) is zero, and 11 when word (AH) is not zero.

^{*12: 4} when word (ear) is zero, and 12 when word (ear) is not zero.

^{*13: 5 + (}a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.

Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)	- - - -	_ _ _ _	1 1 1 1			* * * * *	* * * * *	R R R R	- - - -	_ _ _ _ *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)	 - - - -	_ _ _ _		_ _ _ _		* * * * *	* * * * *	R R R R	- - - -	- - - - *
XOR XOR XOR XOR XOR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A)	 - - - -	_ _ _ _				* * * *	* * * * *	R R R R R	- - - -	- - - - *
NOT NOT NOT	A ear eam	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (b)	byte (A) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	 - -	_ _ _		_ _ _		* *	* *	R R R	_ _ _	- - *
ANDW ANDW ANDW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)	- - - -	- - - -	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	* * * * *	* * * * * *	R R R R R	- - - -	- - - - - *
ORW ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	- - - -	- - - -				* * * * * *	* * * * * *	R R R R R R	_ _ _ _ _	- - - - - *
XORW XORW XORW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (eam) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A)	- - - -	_ _ _ _				* * * * *	* * * * * *	R R R R R	_ _ _ _ _	- - - - - *
NOTW NOTW NOTW	ear	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (c)	word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	- - -	_ _ _	_ 	_ _ _	_ _ _	* *	* *	R R R	_ _ _	- - *

Table 14 Logical 2 Instructions (Long Word) [6 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
ANDL ANDL	A, ear A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	1 1	1 1	1 1		_	*	*	R R	_	_ _
ORL ORL	A, ear A, eam	2 2+	6 7+ (a)	2 0	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	–	_	_	_ _	_ _	*	*	R R	_ _	- -
XORL XORL	A, ea A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) xor (ear) long (A) \leftarrow (A) xor (eam)	-	-	_	_ _	 - -	*	*	R R	_ _	 -

Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	AH	ı	S	Т	N	Z	٧	С	RMW
NEG	Α	1	2	0	0	byte (A) \leftarrow 0 – (A)	Х	-	-	-	_	*	*	*	*	_
NEG NEG	ear eam	2 2+	3 5+ (a)	2	0 2× (b)	byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	_ _	_ _	 - -	_ _	 - -	*	*	*	*	_ *
NEGW	А	1	2	0	0	word (A) \leftarrow 0 – (A)	-	-	_	-	_	*	*	*	*	_
NEGW NEGW		2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow 0 - (ear) word (eam) \leftarrow 0 - (eam)	_ _	1 1	_ _	1 1	_ _	*	*	*	*	*

Table 16 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	#	~	RG	В	Operation	LH	AH	I	S	T	N	Z	٧	С	RMW
NRML A, R0	2	*1	1	0	long (A) ← Shift until first digit is "1" byte (R0) ← Current shift count	_	ı	_	_	-	ı	*	-	-	_

^{*1: 4} when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).

Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	ΑН	ı	S	T	N	Z	٧	С	RMW
RORC ROLC		2 2	2 2	0 0	0 0	byte (A) \leftarrow Right rotation with carry byte (A) \leftarrow Left rotation with carry	_		_	_		*	*	-	*	_
RORC RORC ROLC ROLC		2 2+ 2 2+	3 5+ (a) 3 5+ (a)	2 0 2 0	0 1	byte (ear) ← Right rotation with carry byte (eam) ← Right rotation with carry byte (ear) ← Left rotation with carry byte (eam) ← Left rotation with carry			_ _ _ _	_ _ _		* * *	* * *		* * *	- * - *
ASR LSR LSL	A, R0 A, R0 A, R0	2 2 2	*1 *1 *1	1 1 1	0 0 0	byte (A) \leftarrow Arithmetic right barrel shift (A, R0) byte (A) \leftarrow Logical right barrel shift (A, R0) byte (A) \leftarrow Logical left barrel shift (A, R0)		_ 	- - -	- - -	* * —	* *	* *		* *	- - -
ASRW LSRW LSLW	A A/SHRW A A/SHLW A	1 1 1	2 2 2	0 0 0	0 0 0	word (A) \leftarrow Arithmetic right shift (A, 1 bit) word (A) \leftarrow Logical right shift (A, 1 bit) word (A) \leftarrow Logical left shift (A, 1 bit)	1 1 1	1 1 1			*	* R *	* *	1 1 1	* *	_ _ _
ASRW LSRW LSLW	A, R0 A, R0 A, R0	2 2 2	*1 *1 *1	1 1 1	0 0 0	word (A) \leftarrow Arithmetic right barrel shift (A, R0) word (A) \leftarrow Logical right barrel shift (A, R0) word (A) \leftarrow Logical left barrel shift (A, R0)	_ 		- - -	_ _ _	* * —	* *	* *		* *	- - -
ASRL LSRL LSLL	A, R0 A, R0 A, R0	2 2 2	*2 *2 *2	1 1 1	0 0 0	long (A) ← Arithmetic right shift (A, R0) long (A) ← Logical right barrel shift (A, R0) long (A) ← Logical left barrel shift (A, R0)			_ _ _	_ 	* *	* *	* *		* *	_ _ _

^{*1: 6} when R0 is 0, 5 + (R0) in all other cases.

^{*2: 6} when R0 is 0, 6 + (R0) in all other cases.

Table 18 Branch 1 Instructions [31 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
BZ/BEC	Q rel	2	*1	0	0	Branch when (Z) = 1	_	_	_	_	_	_	_	_	_	_
BNZ/BN	NE rel	2	*1	0	0	Branch when $(Z) = 0$	_	_	_	_	_	_		_	_	-
BC/BLC) rel	2	*1	0	0	Branch when $(C) = 1$	_	_	_	_	_	_		_	_	-
BNC/BH	HS rel	2	*1	0	0	Branch when (C) = 0	_	_	_		_	_	_	_	_	-
BN	rel	2	*1	0	0	Branch when $(N) = 1$	_	_	_	_	_	_		_	_	-
BP	rel	2	*1	0	0	Branch when $(N) = 0$	_	_	_		_	_	_	_	_	-
BV	rel	2	*1	0	0	Branch when (V) = 1	_	_	_		—	—		_	_	-
BNV	rel	2	*1	0	0	Branch when $(V) = 0$	_	_	_	_	_	_		_	_	-
BT	rel	2	*1	0	0	Branch when $(T) = 1$	_	_	_	_	_	_		_	_	-
BNT	rel	2	*1	0	0	Branch when $(T) = 0$	_	_	_		_	_	_	_	_	-
BLT	rel	2	*1	0	0	Branch when (V) xor (N) = 1	_	_	_	_	_	_		_	_	-
BGE	rel	2	*1	0	0	Branch when (V) xor $(N) = 0$	_	_	_	_	_	_		_	_	-
BLE	rel	2	*1	0	0	Branch when $((V) \text{ xor } (N)) \text{ or } (Z) = 1$	_	_	_		_	_		_	_	-
BGT	rel	2	*1	0	0	Branch when $((V) xor (N)) or (Z) = 0$	_	_	_	_	_	_		_	_	-
BLS	rel	2	*1	0	0	Branch when (C) or (Z) = 1	_	_	_	_	_	_		_	_	-
BHI	rel	2	*1	0	0	Branch when (C) or $(Z) = 0$	_	_	_		_	_		_	_	-
BRA	rel	2	*1	0	0	Branch unconditionally	_	_	-	_	–	-	_	_	–	_
JMP	@A	1	2	0	0	word (PC) \leftarrow (A)	_	_	_	_	_	_	_	_	_	_
JMP	addr16	3	3	0	0	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
JMP	@ear	2	3	1	0	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	-
JMP	@eam	2+	4+ (a)	0	(c)	word (PC) ← (eam)	_	_	_	_	_	_	_	_	_	_
JMPP	@ear *3	2	5	2) O	word (PC) \leftarrow (ear), (PCB) \leftarrow (ear +2)	_	_	_	_	_	_	_	_	_	-
JMPP	@eam *3	2+	6+ (a)	0	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam +2)	_	_	_	_	_	_	_	_	_	_
JMPP	addr24	4	4	0	O	word (PC) ← ad24 0 to 15,	_	_	_	_	_	_		_	_	-
						(PCB) ← ad24 16 to 23										
CALL	@ear *4	2	6	1	(c)	word (PC) ← (ear)	_	_	_	_	_	_		_	_	-
CALL	@eam *4	2+	7+ (a)	0	2× (c)	word (PC) ← (eam)	_	_	_		_	_		_	_	-
CALL	addr16 *5	3	6	0	(c)	word (PC) ← addr16	_	_	_	_	_	_		_	_	-
		1	7	0	2× (c)	Vector call instruction	_	_	_	_	_	_		_	_	-
1	@ear *6	2	10	2	2× (c)	word (PC) ← (ear) 0 to 15	_	_	_	_	_	_		_	_	-
0, 122.	o ou.				` '	(PCB) ← (ear) 16 to 23										
CALLP	@eam *6	2+	11+ (a)	0	*2	word (PC) ← (eam) 0 to 15	_		_	_	_	_	_	_	_	_
			'			(PCB) ← (eam) 16 to 23										
CALLP	addr24 *7	4	10	0	2× (c)	word (PC) ← addr0 to 15, (PCB) ← addr16 to 23	_	-	-	_	_	_	_	-	_	-

^{*1: 4} when branching, 3 when not branching.

^{*2: (}b) + $3 \times$ (c)

^{*3:} Read (word) branch address.

^{*4:} W: Save (word) to stack; R: read (word) branch address.

^{*5:} Save (word) to stack.

^{*6:} W: Save (long word) to W stack; R: read (long word) R branch address.

^{*7:} Save (long word) to stack.

Table 19 Branch 2 Instructions [19 Instructions]

CBNE A, #imm8, rel 3 *1 0 C CWBNE A, #imm16, rel 4 *1 0 C	J \ /	_							1		
				_	_	_	*	*	*	*	_
		_	-	-	-	_	*	*	*	*	-
CBNE ear, #imm8, rel 4 *2 1 0	Branch when byte (ear) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CBNE eam, #imm8, rel*9 $ 4+ *3 $ 0 (b)	b) Branch when byte (eam) ≠ imm8	_	-	_	-	_	*	*	*	*	_
CWBNE ear, #imm16, rel 5 *4 1 0	Branch when word (ear) ≠ imm16	_	-	_	-	_	*	*	*	*	_
CWBNE eam, #imm16, rel* 9 5+ * 3 0 (c	Branch when word (eam) ≠ imm16	_	-	-	-	-	*	*	*	*	-
DBNZ ear, rel 3 *5 2 0	Branch when byte (ear) = $(ear) - 1$, and $(ear) \neq 0$	_	-	_	-	_	*	*	*	-	_
DBNZ eam, rel $3+$ *6 2 2×		_	-	_	_	_	*	*	*	-	*
DWBNZ ear, rel 3 *5 2 0	Branch when word (ear) = (ear) – 1, and (ear) ≠ 0	_	-	_	-	_	*	*	*	_	_
DWBNZ eam, rel $3+ *6 2 2 \times$	(c) Branch when word (eam) = $(eam) - 1$, and $(eam) \neq 0$	_	-	-	-	_	*	*	*	_	*
INT #vct8 2 20 0 8×	(c) Software interrupt	_	_	R	s	_	_	_	_	_	_
INT addr16 3 16 0 6×	(c) Software interrupt	_	_	R	S	_	_	_	_	_	_
INTP addr24 4 17 0 6×	(c) Software interrupt	_	-	R	S	_	_		_	_	_
	(c) Software interrupt	_	-	R	S	_	_		_	_	-
RETI	(c) Return from interrupt	_	-	*	*	*	*	*	*	*	_
LINK #local8 2 6 0 (0	pointer to stack, set new frame pointer, and allocate local pointer	_	-	-	_	_	_	_	_	-	-
UNLINK 1 5 0 (0	area At constant entry, retrieve old frame pointer from stack.	_	-	-	-	_	_	_	_	_	_
RET *7	Return from subroutine	_	_	_	_	_	_	_	_	_	_
RETP *8 1 6 0 (0		_	_	_	_	_	_	_	_	_	_

^{*1: 5} when branching, 4 when not branching

^{*2: 13} when branching, 12 when not branching

^{*3: 7 + (}a) when branching, 6 + (a) when not branching

^{*4: 8} when branching, 7 when not branching

^{*5: 7} when branching, 6 when not branching

^{*6: 8 + (}a) when branching, 7 + (a) when not branching

^{*7:} Retrieve (word) from stack

^{*8:} Retrieve (long word) from stack

^{*9:} In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.

Table 20 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	Ι	S	T	N	Z	٧	С	RMW
PUSHW A PUSHW AH PUSHW PS PUSHW rlst	1 1 1 2	4 4 4 *3	0 0 0 *5	(C) (C) (C) *4	word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (A) word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (AH) word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (PS) (SP) \leftarrow (SP) -2n, ((SP)) \leftarrow (rlst)		_ _ _			_ _ _ _	_ _ _		_ _ _	- - -	- - - -
POPW A POPW AH POPW PS POPW rist	1 1 1 2	3 3 4 *2	0 0 0 *5	(C) (C) (C) *4	word (A) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 word (AH) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 word (PS) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 (rlst) \leftarrow ((SP)), (SP) \leftarrow (SP) +2n		* - -	- * -	- * -	- - * -	- - * -	- * -	- * -	- * -	- - - -
JCTX @A	1	14	0	6× (c)	Context switch instruction	-	-	*	*	*	*	*	*	*	_
AND CCR, #imm8 OR CCR, #imm8	2 2	3	0 0	0 0	byte (CCR) \leftarrow (CCR) and imm8 byte (CCR) \leftarrow (CCR) or imm8	_	_ _	*	*	*	*	*	*	*	_ _
MOV RP, #imm8 MOV ILM, #imm8	2 2	2 2	0	0 0	byte (RP) ←imm8 byte (ILM) ←imm8	_	_ _	_	_ _	_	_ _	_ _	_	_	_ _
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2 2+ 2 2+	1	1 1 0 0	0 0 0 0	word (RWi) ←ear word (RWi) ←eam word(A) ←ear word (A) ←eam		- * *			_ _ _ _	 - - -	_ _ _	_ _ _		- - - -
ADDSP #imm8 ADDSP #imm16	2	3	0	0	word (SP) \leftarrow (SP) +ext (imm8) word (SP) \leftarrow (SP) +imm16		_ _	_	_ _	_ _	_ _	_ _	_	<u> </u>	_ _
MOV A, brgl MOV brg2, A	2 2	*1 1	0	0	byte (A) \leftarrow (brgl) byte (brg2) \leftarrow (A)	Z -	*	_	_ _	_	*	*	_	<u> </u>	_ _
NOP ADB DTB PCB SPB NCC CMR	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0	0 0 0 0 0 0	No operation Prefix code for accessing AD space Prefix code for accessing DT space Prefix code for accessing PC space Prefix code for accessing SP space Prefix code for no flag change Prefix code for common register bank						_ _ _ _ _				- - - - -

^{*1:} PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR : 2 states

^{*2:} $7 + 3 \times (pop count) + 2 \times (last register number to be popped)$, 7 when rlst = 0 (no transfer register)

^{*3: 29 + (}push count) $-3 \times$ (last register number to be pushed), 8 when rlst = 0 (no transfer register)

^{*4:} Pop count \times (c), or push count \times (c)

^{*5:} Pop count or push count.

Table 21 Bit Manipulation Instructions [21 Instructions]

M	nemonic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
MOVB MOVB MOVB	A, dir:bp A, addr16:bp A, io:bp	3 4 3	5 5 4	0 0 0	(b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* *	_ _ _	1 1 1	_ _ _	* *	* *			_ _ _
MOVB MOVB MOVB	dir:bp, A addr16:bp, A io:bp, A	3 4 3	7 7 6	0 0 0	2× (b)	bit (dir:bp) b \leftarrow (A) bit (addr16:bp) b \leftarrow (A) bit (io:bp) b \leftarrow (A)	_ _ _	_ _ _	- - -		_ _ _	* *	* * *	_ 	- - -	* *
SETB SETB SETB	dir:bp addr16:bp io:bp	3 4 3	7 7 7	0 0 0	2× (b)	bit (dir:bp) b \leftarrow 1 bit (addr16:bp) b \leftarrow 1 bit (io:bp) b \leftarrow 1	- - -	_ _ _	- - -		- - -	_ _ _	- - -	_ 	_ _ _	* *
CLRB CLRB CLRB	dir:bp addr16:bp io:bp	3 4 3	7 7 7	0 0 0		bit (dir:bp) b \leftarrow 0 bit (addr16:bp) b \leftarrow 0 bit (io:bp) b \leftarrow 0	_ _ _	_ _ _	_ _ _	1 1 1	_ _ _	_ 	_ _ _	_ 	_ _ _	* *
BBC BBC BBC	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b)	Branch when (dir:bp) b = 0 Branch when (addr16:bp) b = 0 Branch when (io:bp) b = 0	- - -	_ _ _	- - -		- - -	_ _ _	* *		- - -	- - -
BBS BBS BBS	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b)	Branch when (dir:bp) b = 1 Branch when (addr16:bp) b = 1 Branch when (io:bp) b = 1	- - -	_ _ _	- - -		- - -	_ _ _	* * *	_ 	_ _ _	- - -
SBBS	addr16:bp, rel	5	*3	0	2× (b)	Branch when (addr16:bp) b = 1, bit = 1	_	_	-	-	_	_	*	_	_	*
WBTS	io:bp	3	*4	0	*5	Wait until (io:bp) b = 1	_	_	_	_	_	_	_	_	_	-
WBTC	io:bp	3	*4	0	*5	Wait until (io:bp) b = 0	_	_	_	ı	_	_	_	ı	_	_

^{*1: 8} when branching, 7 when not branching

^{*2: 7} when branching, 6 when not branching

^{*3: 10} when condition is satisfied, 9 when not satisfied

^{*4:} Undefined count

^{*5:} Until condition is satisfied

Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow$ (A) 8 to 15	_		_	_	_	_	_	_	_	_
SWAPW/XCHW AL, AH	1	2	0	0	word $(AH) \leftrightarrow (AL)$	-	*	_	_	_	_	_	_	_	_
EXT	1	1	0	0	byte sign extension	X		_	_	-	*	*	_	_	-
EXTW	1	2	0	0	word sign extension	-	X	_	—	—	*	*	_	_	-
ZEXT	1	1	0	0	byte zero extension	Z		_	—	—	R	*	_	_	-
ZEXTW	1	1	0	0	word zero extension	-	Z	-	_	-	R	*	_	_	-

Table 23 String Instructions [10 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	AH	ı	S	Т	N	Z	٧	С	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ← @AL+, counter = RW0	_	_	_	_	_	_	_	_	_	_
MOVSD	2	*2	*5	*3	Byte transfer @AH- ← @AL-, counter = RW0	-	_	-	-	_	_	-	_	_	_
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCEQD	2	*1	*5	*4	Byte retrieval (@AH-) - AL, counter = RW0	-	_	_	-	_	*	*	*	*	_
FISL/FILSI	2	6m +6	*5	*3	Byte filling @AH+ ← AL, counter = RW0	-	_	-	_	_	*	*	_	_	_
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer @AH+ ← @AL+, counter = RW0	_	_	_	-	_	_	-	_	_	_
MOVSWD	2	*2	*8	*6	Word transfer @AH- \leftarrow @AL-, counter = RW0	-	_	-	-	_	_	-	-	-	_
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCWEQD	2	*1	*8	*7	Word retrieval (@AH-) - AL, counter = RW0	-	_	_	_	_	*	*	*	*	_
FILSW/FILSWI	2	6m +6	*8	*6	Word filling @AH+ ← AL, counter = RW0	-	_	_	_	_	*	*	_	_	_

m: RW0 value (counter value)

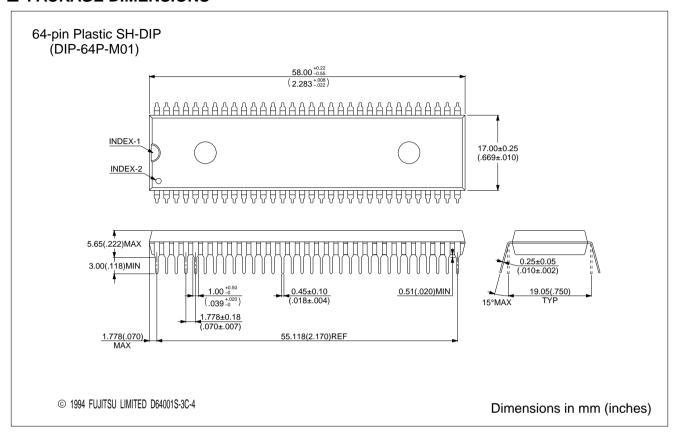
n: Loop count

- *1: 5 when RW0 is 0, $4 + 7 \times (RW0)$ for count out, and $7 \times n + 5$ when match occurs
- *2: 5 when RW0 is 0, $4 + 8 \times (RW0)$ in any other case
- *3: (b) \times (RW0) + (b) \times (RW0) when accessing different areas for the source and destination, calculate (b) separately for each.
- *4: (b) \times n
- *5: 2 × (RW0)
- *6: $(c) \times (RW0) + (c) \times (RW0)$ when accessing different areas for the source and destination, calculate (c) separately for each.
- *7: (c) \times n
- *8: 2 × (RW0)

■ MASK OPTION LIST

No.	Part number	MB60 MB90	MB90P663A						
NO.	Specifying procedure	Specify ordering	when masking	Set with EPROM programmer					
1	P00 to P07 P10 to P17 P20 to P27 P30 to P33 P40 to P47 P60 to P66 RST DTTI	Pull-up resistor can each pin	be selected for	Pull-up resistor can be selected for each pin					
	MD2	Pull-down resistor	Can be selected	Cannot be selected; pull-down resistor not provided					
2	MD1	Pull-up resistor	all at once	Pull-up resistor	Can be selected				
	MD0	Pull-up resistor		Pull-up resistor	all at once				
3	Accept asynchronous reset input Accepted Not accepted	Can be selected		Can be selected					

Notes: • A specification of "yes" for accept asynchronous reset input refers to a function whereby reset input is accepted when oscillation for output ports (including peripheral resource output) is stopped and port output (including peripheral resource output) is forced Hi-z. Note, however, that since internal reset (reset of the CPU and peripheral resources) is synchronized with the clock, the CPU and peripheral resources are not initialized when the clock is stopped.


- For details on writing to the MB90P663A, see Chapter 6, "■ PROGRAMMING THE MB90P663A EPROM".
- Use of a pull-up/pull-down resistors for the mode pins (MD2 to MD0) can be selected separately for each pin. If "yes" is selected, a pull-up is attached to MD0 and MD1 and a pull-down to MD2 for mask ROM versions. A pull-up is attached to MD0 and MD1, but a pull-down is not attached to MD2 for OTP versions.
- Since it takes eight machine cycles to make option settings for the MB90P663A, options cannot be set between when power is first turned on and the clock is supplied. (This results in a setting of no pull-up for all pins and accept asynchronous reset input.)


To Top / Lineup / Index MB90660A Series

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90662AP-SH MB90663AP-SH MB90P663AP-SH	64-pin plastic SH-DIP (DIP-64P-M01)	
MB90662APFM MB90663APFM MB90P663APFM	64-pin plastic LQFP (FTP-64P-M09)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000

Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703

© FUJITSU LIMITED Printed in Japan